Quantifying Urban-induced Flow Regime Alteration and Evaluating Mitigation Alternatives Using Mathematical Models and Hydrologic Metrics

Author(s):  
J. L. Egderly ◽  
L. A. Roesner ◽  
C. A. Rohrer ◽  
J. A. Gironás

The spatial development of boundary-layer instabilities has been investigated experimentally in a flow régime where nonlinearities are important. Detailed measurements of the evolution of a regular periodic wavetrain into an irregular or chaotic one are reported. It was found that the broadband noise content of the motion grew very rapidly downstream when the amplitude of the periodic component was sufficiently large. The almost explosive growth of the broadband element provided velocity fluctuations with chaotic time series similar to those generated by mathematical models based on low-order differential equations.


Author(s):  
Joseph S. Mei ◽  
Esmail R. Monazam ◽  
Lawerence J. Shadle

A series of experiments was conducted in the 0.3-meter diameter circulating fluidized bed test facility at the U.S. Department of Energy’s National Energy Technology Laboratory (NETL). Cork, the bed material used in this study, is a coarse, light material, with a particle density of 189 kg/m3 and a mean diameter of 1007 μm. Fluidizing this material in ambient air provides approximately the same gas to solids density ratio as coal and coal char in a pressurized gasifier. Furthermore, the density ratio of cork to air under ambient conditions is similar to the density ratio of coal to gas at the gasification and pressurized fluidized bed combustion environment. The purpose of this study is to generate reliable data to validate the mathematical models currently under development at NETL. Using such coarse, light material can greatly facilitate the computation of these mathematical models. This paper presents and discusses data for the operating flow regimes of dilute-phase, fast-fluidization, and dense-phase transport by varying the solid flux (Gs) at a constant gas velocity (Ug). Data are presented by mapping the flow regime for coarse cork particles in a ΔP/ ΔL-Gs-Ug plot. The coarse cork particles exhibited different behavior than the measurements on heavier materials found in published literature, such as alumina, sand, FCC, and silica gel. Stable operation can be obtained at a fixed riser gas velocity that is higher than the transport velocity (e.g. at Ug = 3.2 m/sec), even though the riser is operating within the fast fluidization flow regime. Depending upon the solid influx, the riser can also be operated at dilute-phase or dense-phase flow regimes. Experimental data were compared to empirical correlations in published literature for flow regime boundaries, and solid fractions in the upper-dilute and the lower-dense regions of a fast fluidization flow regime. Comparisons of measured data show rather poor agreement with these empirical correlations. Xu et al. (2000) have observed this lack of agreement in their study of the effect of bed diameter on the saturation carrying capacity. The basis of empirical correlations depends on bed diameter and particle type, and are generally not well understood.


2006 ◽  
Vol 128 (2) ◽  
pp. 129-134 ◽  
Author(s):  
Joseph S. Mei ◽  
Esmail R. Monazam ◽  
Lawrence J. Shadle

A series of experiments was conducted in the 0.3meter diameter circulating fluidized bed test facility at the National Energy Technology Laboratory (NETL) of the U. S. Department of Energy. The particle used in this study was a coarse, light material, cork, which has a particle density of 189kg∕m3 and a mean diameter of 812μm. Fluidizing this material in ambient air approximates the same gas-solids density ratio as coal and coal char in a pressurized gasifier. The purpose of this study is twofold. First, this study is to provide a better understanding on the fundamentals of flow regimes and their transitions. The second purpose of this study is to generate reliable data to validate the mathematical models, which are currently under development at NETL. Utilization of such coarse, light material can greatly facilitate the computation of these mathematical models. Furthermore, the ratio of density of cork to air under ambient conditions is similar to the density ratio of coal to gas at the gasification and pressurized fluidized bed combustion environment. This paper presents and discusses the data, which covered operating flow regime from dilute phase, fast fluidization, and to dense phase transport by varying the solid flux, Gs at a constant gas velocity, Ug. Data are presented by mapping the flow regime for coarse cork particles in a ΔP∕ΔL‐Gs‐Ug plot. The coarse cork particles exhibited different behavior than the published literature measurements on heavier materials such as alumina, sand, FCC, silica gel, etc. A stable operation can be obtained at a fixed riser gas velocity higher than the transport velocity, e.g., at Ug=3.2m∕s, even though the riser is operated within the fast fluidization flow regime. Depending upon the solids influx, the riser can also be operated at dilute phase or dense phase flow regimes. Experimental data were compared to empirical correlations in published literature for flow regime boundaries as well as solids fractions in the upper dilute and the lower dense regions for fast fluidization flow regime. Comparisons of measured data with these empirical correlations show rather poor agreements. These discrepancies, however, are not surprising since the correlations for these transitions were derived from experimental data of comparative heavier materials such as sands, FCC, iron ore, alumina, etc.


2014 ◽  
Vol 31 (4) ◽  
pp. 422-432 ◽  
Author(s):  
J. Tang ◽  
X. A. Yin ◽  
P. Yang ◽  
Z. F. Yang

1988 ◽  
Vol 41 (8) ◽  
pp. 299-319 ◽  
Author(s):  
Earl H. Dowell

In recent years substantial progress has been made in the development of an improved understanding of unsteady aerodynamics and aeroelasticity in the transonic flow regime. This flow regime is often the most critical for aeroelastic phenomena; yet it has proven the most difficult to master in terms of basic understanding of physical phenomena and the development of predictive mathematical models. The difficulty is primarily a result of the nonlinearities which may be important in transonic flow. Emerging mathematical models have relied principally on finite difference solutions to the governing nonlinear partial differential equations of fluid mechanics. Here are addressed fundamental questions of current interest which will provide the reader with a basis for understanding the recent and current literature in the field. Four principal questions are discussed: (1) Under what conditions are the aerodynamic forces essentially linear functions of the airfoil motion? (2) Are there viable alternative methods to finite difference procedures for solving the relevant fluid dynamical equations? (3) Under conditions when the aerodynamic forces are nonlinear functions of the airfoil motion, what is the significance of the multiple (nonunique) solutions which are sometimes observed? (4) What are effective, efficient computational procedures for using unsteady transonic aerodynamic computer codes in aeroelastic (e.g., flutter) analyses?


Sign in / Sign up

Export Citation Format

Share Document