Fine-Scale Measurement of Sediment Suspension by Breaking Waves at Supertank

Author(s):  
Stephen F. Barkaszi ◽  
William R. Dally
1982 ◽  
Vol 25 (1) ◽  
pp. 163-176 ◽  
Author(s):  
Tomoya Shibayama ◽  
Kiyoshi Horikawa

2017 ◽  
Vol 158 ◽  
pp. 57-71 ◽  
Author(s):  
Zixuan Yang ◽  
Xin-Hua Lu ◽  
Xin Guo ◽  
Yi Liu ◽  
Lian Shen

Author(s):  
Ayumi Saruwatari ◽  
Junichi Otsuka ◽  
Yasunori Watanabe

Three-dimensional vortex structures involving obliquely descending eddies (ODE), produced by depth-induced breaking-waves, has been proved to be associated with local sediment suspension in the surf zone (Zhou et al., 2017); vertical velocity fluctuations around the ODEs induces sediment suspension near the bed. Otsuka et al. (2017) explained the mechanical contributions of the ODEs to enhance local sediment suspension under the breaking waves and modeled the vortex-induced suspension to predict the profile of the equilibrium sediment concentration in the surf zone. In order to predict local behaviors of sediment, however, sediment-turbulence interactions in the transitional turbulence under breaking waves need to be understood. The interaction may be described in terms of Schmidt number (Sc). Sc has been empirically determined for trivial steady flows such as open channel or pipe flows. In the surf zone where organized flows evolve into a turbulent bore, the interaction may vary with the transitional feature of turbulence during a wave-breaking process, and thus Sc may be variable in time and space. No appropriate Sc model has been proposed for the surf zone flow. A parametric study on the sediment motion with respect to the variation of Sc is required for better prediction of sediment transport in the surf zone. In this study, contributions of the sediment advection and diffusion in the vortex structure to the concentration are computationally investigated. Effects of Sc to the sediment suspension and diffusion process will be also discussed in this work.


Author(s):  
Russell L. Steere

Complementary replicas have revealed the fact that the two common faces observed in electron micrographs of freeze-fracture and freeze-etch specimens are complementary to each other and are thus the new faces of a split membrane rather than the original inner and outer surfaces (1, 2 and personal observations). The big question raised by published electron micrographs is why do we not see depressions in the complementary face opposite membrane-associated particles? Reports have appeared indicating that some depressions do appear but complementarity on such a fine scale has yet to be shown.Dog cardiac muscle was perfused with glutaraldehyde, washed in distilled water, then transferred to 30% glycerol (material furnished by Dr. Joaquim Sommer, Duke Univ., and VA Hospital, Durham, N.C.). Small strips were freeze-fractured in a Denton Vacuum DFE-2 Freeze-Etch Unit with complementary replica tooling. Replicas were cleaned in chromic acid cleaning solution, then washed in 4 changes of distilled water and mounted on opposite sides of the center wire of a Formvar-coated grid.


2020 ◽  
pp. 34-42
Author(s):  
Thibault Chastel ◽  
Kevin Botten ◽  
Nathalie Durand ◽  
Nicole Goutal

Seagrass meadows are essential for protection of coastal erosion by damping wave and stabilizing the seabed. Seagrass are considered as a source of water resistance which modifies strongly the wave dynamics. As a part of EDF R & D seagrass restoration project in the Berre lagoon, we quantify the wave attenuation due to artificial vegetation distributed in a flume. Experiments have been conducted at Saint-Venant Hydraulics Laboratory wave flume (Chatou, France). We measure the wave damping with 13 resistive waves gauges along a distance L = 22.5 m for the “low” density and L = 12.15 m for the “high” density of vegetation mimics. A JONSWAP spectrum is used for the generation of irregular waves with significant wave height Hs ranging from 0.10 to 0.23 m and peak period Tp ranging from 1 to 3 s. Artificial vegetation is a model of Posidonia oceanica seagrass species represented by slightly flexible polypropylene shoots with 8 artificial leaves of 0.28 and 0.16 m height. Different hydrodynamics conditions (Hs, Tp, water depth hw) and geometrical parameters (submergence ratio α, shoot density N) have been tested to see their influence on wave attenuation. For a high submergence ratio (typically 0.7), the wave attenuation can reach 67% of the incident wave height whereas for a low submergence ratio (< 0.2) the wave attenuation is negligible. From each experiment, a bulk drag coefficient has been extracted following the energy dissipation model for irregular non-breaking waves developed by Mendez and Losada (2004). This model, based on the assumption that the energy loss over the species meadow is essentially due to the drag force, takes into account both wave and vegetation parameter. Finally, we found an empirical relationship for Cd depending on 2 dimensionless parameters: the Reynolds and Keulegan-Carpenter numbers. These relationships are compared with other similar studies.


Sign in / Sign up

Export Citation Format

Share Document