Vertical Stress Chart for Rigid Circular Foundations

1973 ◽  
Vol 99 (12) ◽  
pp. 1196-1201
Author(s):  
Alfreds R. Jumikis
Keyword(s):  
Author(s):  
Rui Wu ◽  
Penghui Zhang ◽  
Pinnaduwa H. S. W. Kulatilake ◽  
Hao Luo ◽  
Qingyuan He

AbstractAt present, non-pillar entry protection in longwall mining is mainly achieved through either the gob-side entry retaining (GER) procedure or the gob-side entry driving (GED) procedure. The GER procedure leads to difficulties in maintaining the roadway in mining both the previous and current panels. A narrow coal pillar about 5–7 m must be left in the GED procedure; therefore, it causes permanent loss of some coal. The gob-side pre-backfill driving (GPD) procedure effectively removes the wasting of coal resources that exists in the GED procedure and finds an alternative way to handle the roadway maintenance problem that exists in the GER procedure. The FLAC3D software was used to numerically investigate the stress and deformation distributions and failure of the rock mass surrounding the previous and current panel roadways during each stage of the GPD procedure which requires "twice excavation and mining". The results show that the stress distribution is slightly asymmetric around the previous panel roadway after the “primary excavation”. The stronger and stiffer backfill compared to the coal turned out to be the main bearing body of the previous panel roadway during the "primary mining". The highest vertical stresses of 32.6 and 23.1 MPa, compared to the in-situ stress of 10.5 MPa, appeared in the backfill wall and coal seam, respectively. After the "primary mining", the peak vertical stress under the coal seam at the floor level was slightly higher (18.1 MPa) than that under the backfill (17.8 MPa). After the "secondary excavation", the peak vertical stress under the coal seam at the floor level was slightly lower (18.7 MPa) than that under the backfill (19.8 MPa); the maximum floor heave and maximum roof sag of the current panel roadway were 252.9 and 322.1 mm, respectively. During the "secondary mining", the stress distribution in the rock mass surrounding the current panel roadway was mainly affected by the superposition of the front abutment pressure from the current panel and the side abutment pressure from the previous panel. The floor heave of the current panel roadway reached a maximum of 321.8 mm at 5 m ahead of the working face; the roof sag increased to 828.4 mm at the working face. The peak abutment pressure appeared alternately in the backfill and the coal seam during the whole procedure of "twice excavation and mining" of the GPD procedure. The backfill provided strong bearing capacity during all stages of the GPD procedure and exhibited reliable support for the roadway. The results provide scientific insight for engineering practice of the GPD procedure.


2021 ◽  
Author(s):  
Dariusz Chlebowski ◽  
Zbigniew Burtan

AbstractA variety of geophysical methods and analytical modeling are applied to determine the rockburst hazard in Polish coal mines. In particularly unfavorable local conditions, seismic profiling, active/passive seismic tomography, as well as analytical state of stress calculating methods are recommended. They are helpful in verifying the reliability of rockburst hazard forecasts. In the article, the combined analysis of the state of stress determined by active seismic tomography and analytical modeling was conducted taking into account the relationship between the location of stress concentration zones and the level of rockburst hazard. A longwall panel in the coal seam 501 at a depth of ca.700 m in one of the hard coal mines operating in the Upper Silesian Coal Basin was a subject of the analysis. The seismic tomography was applied for the reconstruction of P-wave velocity fields. The analytical modeling was used to calculate the vertical stress states basing on classical solutions offered by rock mechanics. The variability of the P-wave velocity field and location of seismic anomaly in the coal seam in relation to the calculated vertical stress field arising in the mined coal seam served to assess of rockburst hazard. The applied methods partially proved their adequacy in practical applications, providing valuable information on the design and performance of mining operations.


1995 ◽  
Vol 32 (2) ◽  
pp. 195-203 ◽  
Author(s):  
Fanyu Zhu ◽  
Jack I. Clark ◽  
Michael J. Paulin

This paper presents the results of a laboratory study on the at-rest lateral stress and Ko of two artificially cemented sands. A modified oedometer ring was used to measure the lateral stress of cemented and uncemented sands. Test materials were No. 3 Ottawa sand and a marine sand with Portland cement. The specimens were prepared using the method of undercompaction to minimize the influence of specimen preparation on test results. The cement contents were 0, 0.5, 1.0, 2.0, 4.0, and 8.0% by the weight of dry sand. The water content of the specimens was 4% of the weight of dry sand and cement. When the sands were cured under zero confining pressure, the test results indicated the following: the at-rest lateral stress in cemented sands decreases significantly with increasing cement content; the relationship between the vertical and at-rest lateral stress is nonlinear and the value of Ko increases with increasing vertical stress; and the lateral stress decreases with sand density and curing period. When the specimens were cured under vertical stress, the value of Ko during the removal of vertical loading increased with both overconsolidation ratio and cement content. Stress history has a significant influence on the behaviour of at-rest lateral stress in cement sands. Key words : cemented sand, Ko, lateral stress, overconsolidation, stress history.


1995 ◽  
Vol 28 (4A) ◽  
pp. A50-A55 ◽  
Author(s):  
R Kohler ◽  
B Jenichen ◽  
H Raidt ◽  
E Bauser ◽  
N Nagel

2016 ◽  
Vol 124-125 ◽  
pp. 11-20 ◽  
Author(s):  
Yong-Gui Chen ◽  
Chun-Min Zhu ◽  
Wei-Min Ye ◽  
Yu-Jun Cui ◽  
Bao Chen

2021 ◽  
pp. 1-18
Author(s):  
Russell T. Ewy

Summary Wells are sometimes deformed due to geomechanical shear slip, which occurs on a localized slip surface, such as a bedding plane, fault, or natural fracture. This can occur in the overburden above a conventional reservoir (during production) or within an unconventional reservoir (during completion operations). Shear slip will usually deform the casing into a recognizable shape, with lateral offset and two opposite-trending bends, and ovalized cross sections. Multifinger casing caliper tools have a recognizable response to this shape and are especially useful for diagnosing well shear. Certain other tools can also provide evidence for shear deformation. Shear deformations above a depleting, compacting reservoir are usually due to slip on bedding planes. They usually occur at multiple depths and are driven by overburden bending in response to reservoir differential compaction. Shear deformations in unconventional reservoirs, for the examples studied, have been found to be caused by slip on bedding planes and natural fractures. In both cases, models, field data, and physical reasoning suggest that slip occurs primarily due to fluid pressurization of the interface. In the case of bedding plane slip, fracturing pressure greater than the vertical stress (in regions where the vertical stress is the intermediate stress) could lead to propagation of a horizontal fracture, which then slips in shear.


Sign in / Sign up

Export Citation Format

Share Document