Photostimulable transparent NaCl:Cu single crystals for two‐dimensional x‐ray imaging sensors

1991 ◽  
Vol 59 (15) ◽  
pp. 1838-1840 ◽  
Author(s):  
Hidehito Nanto ◽  
Takayuki Usuda ◽  
Kazuhiko Murayama ◽  
Hideki Sokooshi ◽  
Shouichi Nakamura ◽  
...  
1993 ◽  
Author(s):  
Hidehito Nanto ◽  
Kazuhiko Murayama ◽  
Fumitaka Endo ◽  
Yoshiaki Hirai ◽  
Shin-ichi Taniguchi ◽  
...  

1994 ◽  
Vol 75 (11) ◽  
pp. 7493-7497 ◽  
Author(s):  
H. Nanto ◽  
F. Endo ◽  
Y. Hirai ◽  
S. Nasu ◽  
S. Taniguchi ◽  
...  

1990 ◽  
Vol 61 (10) ◽  
pp. 2756-2758 ◽  
Author(s):  
R. Kaita ◽  
S. von Goeler ◽  
S. Sesnic ◽  
S. Bernabei ◽  
E. Fredrickson ◽  
...  

2003 ◽  
Vol 58 (10) ◽  
pp. 971-974 ◽  
Author(s):  
U. Ch. Rodewald ◽  
R.-D. Hoffmann ◽  
R. Pöttgen ◽  
E.V. Sampathkumaran

Single crystals of Eu2PdSi3 were obtained from an arc-melted sample that was further annealed at 1020 K for seven days in a silica tube. The structure of Eu2PdSi3 was refined from single crystal X-ray diffractometer data: P6/mmm, a = 831.88(12), c = 435.88(9) pm, wR2 = 0.1175, 265 F2 values, and 13 variable parameters. It crystallizes with the U2RuSi3 structure, a superstructure of the AlB2 type. The palladium and silicon atoms form a planar two-dimensional [PdSi3] network. The two crystallographically different europium atoms have hexagonal prismatic coordinations Eu1Si12 and Eu2Pd4Si8. The Pd-Si and Si-Si distances within the [PdSi3] network are 244 and 236 pm, respectively.


2021 ◽  
Vol 16 (12) ◽  
pp. C12014
Author(s):  
M. Zoladz ◽  
P. Grybos ◽  
R. Szczygiel

Abstract X-ray imaging of moving objects using line detectors remains the most popular method of object content and structure examination with a typical resolution limited to 0.4–1 mm. Higher resolutions are difficult to obtain as, for the detector in the form of a single pixel row, the narrower the detector is, the lower the image Signal to Noise Ratio (SNR). This is because, for smaller pixel sizes, fewer photons hit the pixel in each time unit for a given radiation intensity. To overcome the trade-off between the SNR and spatial resolution, a two-dimensional sensor, namely a pixel matrix can be used. Imaging of moving objects with a pixel matrix requires time-domain integration (TDI). Straightforward TDI implementation is based on the proper accumulation of images acquired during consecutive phases of an object’s movement. Unfortunately, this method is much more demanding regarding data transfer and processing. Data from the whole pixel matrix instead of a single pixel row must be transferred out of the chip and then processed. The alternative approach is on-chip TDI implementation. It takes advantage of photons acquired by multiple rows (a higher SNR), but generates similar data amount as a single pixel row and does not require data processing out of the chip. In this paper, on-chip TDI is described and verified by using a single photon counting two-dimensional (a matrix of 128 × 192 pixels) CdTe hybrid X-ray detector with the 100 µm × 100 µm pixel size with up to four energy thresholds per pixel. Spatial resolution verification is combined with the Material Discrimination X-ray (MDX) imaging method.


2020 ◽  
Vol 32 (42) ◽  
pp. 2003353
Author(s):  
Xin Song ◽  
Qingyue Cui ◽  
Yucheng Liu ◽  
Zhuo Xu ◽  
Hagai Cohen ◽  
...  

1997 ◽  
Vol 29 (1-2) ◽  
pp. 89-101 ◽  
Author(s):  
M. Ermrich ◽  
F. Hahn ◽  
E. R. Wölfel

Two-dimensional detectors have opened a new area for the investigation of both single crystals and polycrystalline materials. The working principle of Imaging Plates is described. Some characteristics and the advantages of an Imaging Plate are discussed using the STOE Imaging Plate Diffraction System for different kinds of X-ray analysis: (i) single crystal diffractometry, (ii) powder diffraction and (iii) stress and texture investigations.


Sign in / Sign up

Export Citation Format

Share Document