scholarly journals Non-collisional kinetic model for non-neutral plasmas in a Penning trap: General properties and stationary solutions

Author(s):  
Gianni G. M. Coppa
Mathematics ◽  
2019 ◽  
Vol 7 (8) ◽  
pp. 673
Author(s):  
Carlo Bianca ◽  
Marco Menale

The existence and reaching of nonequilibrium stationary states are important issues that need to be taken into account in the development of mathematical modeling frameworks for far off equilibrium complex systems. The main result of this paper is the rigorous proof that the solution of the discrete thermostatted kinetic model catches the stationary solutions as time goes to infinity. The approach towards nonequilibrium stationary states is ensured by the presence of a dissipative term (thermostat) that counterbalances the action of an external force field. The main result is obtained by employing the Discrete Fourier Transform (DFT).


Author(s):  
П.Б. Исакова ◽  
Я.Н. Павлюченков

Для понимания физики и общих свойств экзопланет важно изучать свойства их атмосфер. В статье последовательно рассматриваются гидростатические и стационарные решения уравнений газодинамики для исследования структуры течения атмосфер экзопланет в изотермическом и адиабатическом приближениях. Данные решения, несмотря на их абстрактный характер, важны для понимания физики процесса истечения и играют роль опорных точек при разработке более реалистичных моделей. To understand the physics and general properties of exoplanets it is important to study the properties of their atmospheres. In this paper, we sequentially discuss the hydrostatical and hydrodynamical stationary solutions for an exoplanet atmosphere in isothermal and adiabatic approximations. These solutions, despite their abstract nature, are important for understanding the physics of the outflow process and play the role of reference points in the development of more realistic models.


1999 ◽  
Vol 237 (2) ◽  
pp. 622-643 ◽  
Author(s):  
R. Illner ◽  
A. Klar ◽  
H. Lange ◽  
A. Unterreiter ◽  
R. Wegener

2008 ◽  
Vol 7 (1) ◽  
pp. 9-12 ◽  
Author(s):  
Ilie Siminiceanu ◽  
Carmen-Ionela Alexandru ◽  
Eric Brillas

Sign in / Sign up

Export Citation Format

Share Document