Nonlinear Internal Wave Interactions with Low Frequency Shallow Water Sound—What is left to Do?

2010 ◽  
Author(s):  
James F. Lynch ◽  
Timothy F. Duda ◽  
Ying-Tsong Lin ◽  
Arthur E. Newhall ◽  
Jeffrey Simmen ◽  
...  
2012 ◽  
Vol 695 ◽  
pp. 341-365 ◽  
Author(s):  
Philip L.-F. Liu ◽  
Xiaoming Wang

AbstractIn this paper, a multi-layer model is developed for the purpose of studying nonlinear internal wave propagation in shallow water. The methodology employed in constructing the multi-layer model is similar to that used in deriving Boussinesq-type equations for surface gravity waves. It can also be viewed as an extension of the two-layer model developed by Choi & Camassa. The multi-layer model approximates the continuous density stratification by an $N$-layer fluid system in which a constant density is assumed in each layer. This allows the model to investigate higher-mode internal waves. Furthermore, the model is capable of simulating large-amplitude internal waves up to the breaking point. However, the model is limited by the assumption that the total water depth is shallow in comparison with the wavelength of interest. Furthermore, the vertical vorticity must vanish, while the horizontal vorticity components are weak. Numerical examples for strongly nonlinear waves are compared with laboratory data and other numerical studies in a two-layer fluid system. Good agreement is observed. The generation and propagation of mode-1 and mode-2 internal waves and their interactions with bottom topography are also investigated.


1980 ◽  
Vol 85 (C2) ◽  
pp. 1085 ◽  
Author(s):  
Neil Pomphrey ◽  
James D. Meiss ◽  
Kenneth M. Watson

2006 ◽  
Vol 120 (5) ◽  
pp. 3032-3032
Author(s):  
Geoffrey F. Edelmann ◽  
Joseph F. Lingevitch ◽  
David C. Calvo

2012 ◽  
Vol 2012 ◽  
pp. 1-12
Author(s):  
B. Casaday ◽  
J. Crockett

Using ray theory, we explore the effect an envelope function has on high-frequency, small-scale internal wave propagation through a low-frequency, large-scale inertia wave. Two principal interactions, internal waves propagating through an infinite inertia wavetrain and through an enveloped inertia wave, are investigated. For the first interaction, the total frequency of the high-frequency wave is conserved but is not for the latter. This deviance is measured and results of waves propagating in the same direction show the interaction with an inertia wave envelope results in a higher probability of reaching that Jones' critical level and a reduced probability of turning points, which is a better approximation of outcomes experienced by expected real atmospheric interactions. In addition, an increase in wave action density and wave steepness is observed, relative to an interaction with an infinite wavetrain, possibly leading to enhanced wave breaking.


1981 ◽  
Author(s):  
M. A. Weissman ◽  
R. W. Metcalfe ◽  
J. J. Riley

2020 ◽  
Vol 28 (03) ◽  
pp. 1950013
Author(s):  
Alexey Shmelev ◽  
Ying-Tsong Lin ◽  
James Lynch

Crossing internal wave trains are commonly observed in continental shelf shallow water. In this paper, we study the effects of crossing internal wave structures on three-dimensional acoustic ducts with both theoretical and numerical approaches. We show that, depending on the crossing angle, acoustic energy, which is trapped laterally between internal waves of one train, can be either scattered, cross-ducted or reflected by the internal waves in the crossing train. We describe the governing physics of these effects and illustrate them for selected internal wave scenarios using full-field numerical simulations.


Sign in / Sign up

Export Citation Format

Share Document