Gas‐phase oxidation chemistry during pulsed laser deposition of YBa2Cu3O7−δ films

1993 ◽  
Vol 73 (11) ◽  
pp. 7877-7886 ◽  
Author(s):  
Arunava Gupta
2013 ◽  
Vol 10 (3) ◽  
pp. 151 ◽  
Author(s):  
N. M. Donahue ◽  
W. Chuang ◽  
S. A. Epstein ◽  
J. H. Kroll ◽  
D. R. Worsnop ◽  
...  

Environmental context Fine particles (aerosols) containing organic compounds are central players in two important environmental issues: aerosol-climate effects and human health effects (including mortality). Although organics constitute half or more of the total fine-particle mass, their chemistry is extremely complex; of critical importance is ongoing oxidation chemistry in both the gas phase and the particle phase. Here we present a method for representing that oxidation chemistry when the actual composition of the organics is not known and show that relatively slow oxidant uptake to particles plays a key role in the very existence of organic aerosols. Abstract Organic aerosols play a critical role in atmospheric chemistry, human health and climate. Their behaviour is complex. They consist of thousands of organic molecules in a rich, possibly highly viscous mixture that may or may not be in phase equilibrium with organic vapours. Because the aerosol is a mixture, compounds from all sources interact and thus influence each other. Finally, most ambient organic aerosols are highly oxidised, so the molecules are secondary products formed from primary emissions by oxidation chemistry and possibly non-oxidative association reactions in multiple phases, including gas-phase oxidation, aqueous oxidation, condensed (organic) phase reactions and heterogeneous interactions of all these phases. In spite of this complexity, we can make a strong existential statement about organic aerosol: They exist throughout the troposphere because heterogeneous oxidation by OH radicals is more than an order of magnitude slower than comparable gas-phase oxidation.


Author(s):  
Michael P. Mallamaci ◽  
James Bentley ◽  
C. Barry Carter

Glass-oxide interfaces play important roles in developing the properties of liquid-phase sintered ceramics and glass-ceramic materials. Deposition of glasses in thin-film form on oxide substrates is a potential way to determine the properties of such interfaces directly. Pulsed-laser deposition (PLD) has been successful in growing stoichiometric thin films of multicomponent oxides. Since traditional glasses are multicomponent oxides, there is the potential for PLD to provide a unique method for growing amorphous coatings on ceramics with precise control of the glass composition. Deposition of an anorthite-based (CaAl2Si2O8) glass on single-crystal α-Al2O3 was chosen as a model system to explore the feasibility of PLD for growing glass layers, since anorthite-based glass films are commonly found in the grain boundaries and triple junctions of liquid-phase sintered α-Al2O3 ceramics.Single-crystal (0001) α-Al2O3 substrates in pre-thinned form were used for film depositions. Prethinned substrates were prepared by polishing the side intended for deposition, then dimpling and polishing the opposite side, and finally ion-milling to perforation.


1998 ◽  
Vol 08 (PR9) ◽  
pp. Pr9-261-Pr9-264
Author(s):  
M. Tyunina ◽  
J. Levoska ◽  
A. Sternberg ◽  
V. Zauls ◽  
M. Kundzinsh ◽  
...  

2001 ◽  
Vol 11 (PR11) ◽  
pp. Pr11-65-Pr11-69
Author(s):  
N. Lemée ◽  
H. Bouyanfif ◽  
J. L. Dellis ◽  
M. El Marssi ◽  
M. G. Karkut ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document