Asymptotic expansion of singular solutions to Protter problem for (2+1)-D degenerate wave equation

Author(s):  
Aleksey Nikolov ◽  
Nedyu Popivanov
2018 ◽  
Vol 2018 ◽  
pp. 1-18
Author(s):  
Nguyen Huu Nhan ◽  
Le Thi Phuong Ngoc ◽  
Nguyen Thanh Long

We consider the Robin-Dirichlet problem for a nonlinear wave equation of Kirchhoff-Carrier type. Using the Faedo-Galerkin method and the linearization method for nonlinear terms, the existence and uniqueness of a weak solution are proved. An asymptotic expansion of high order in a small parameter of a weak solution is also discussed.


2021 ◽  
pp. 2150439
Author(s):  
Karmina K. Ali ◽  
R. Yilmazer ◽  
H. Bulut ◽  
Tolga Aktürk ◽  
M. S. Osman

In this study, the strain wave equation in micro-structured solids which take an important place in solid physics is presented for consideration. The generalized exponential rational function method is used for this purpose which is one of the most powerful methods of constructing abundantly distinct, exact solutions of nonlinear partial differential equations. In micro-structured solids, wave propagation is based on the structure of the strain wave equation. As a consequence, we successfully received many different exact solutions, including non-topological solutions, periodic singular solutions, topological solutions, singular solutions, like periodic lump solutions. Furthermore, in order to better understand their physical interpretation, 2D, 3D, and counter plots are graphed for each of the solutions acquired.


1999 ◽  
Author(s):  
Paul E. Barbone

Abstract We derive a one-way wave equation representation of the “free space” Green’s function for an inhomogeneous medium. Our representation results from an asymptotic expansion in inverse powers of the wavenumber. Our representation takes account of losses due to scattering in all directions, even though only one-way operators are used.


2001 ◽  
Vol 11 (07) ◽  
pp. 1285-1310 ◽  
Author(s):  
R. ORIVE ◽  
E. ZUAZUA ◽  
A. F. PAZOTO

We consider a linear dissipative wave equation in ℝN with periodic coefficients. By means of Bloch wave decomposition, we obtain an expansion of solutions as t→∞ and conclude that, in a first approximation, the solutions behave as the homogenized heat kernel.


Sign in / Sign up

Export Citation Format

Share Document