A collapse of the cross-spectral function in phase noise metrology

2014 ◽  
Vol 85 (2) ◽  
pp. 024705 ◽  
Author(s):  
C. W. Nelson ◽  
A. Hati ◽  
D. A. Howe
2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Patrick Fleischmann ◽  
Heinz Mathis ◽  
Jakub Kucera ◽  
Stefan Dahinden

The cross-correlation method allows phase-noise measurements of high-quality devices with very low noise levels, using reference sources with higher noise levels than the device under test. To implement this method, a phase-noise analyzer needs to compute the cross-spectral density, that is, the Fourier transform of the cross-correlation, of two time series over a wide frequency range, from fractions of Hz to tens of MHz. Furthermore, the analyzer requires a high dynamic range to accommodate the phase noise of high-quality oscillators that may fall off by more than 100 dB from close-in noise to the noise floor at large frequency offsets. This paper describes the efficient implementation of a cross-spectrum analyzer in a low-cost FPGA, as part of a modern phase-noise analyzer with very fast measurement time.


2017 ◽  
Vol 88 (11) ◽  
pp. 114707 ◽  
Author(s):  
Archita Hati ◽  
Craig W. Nelson ◽  
David P. Pappas ◽  
David A. Howe

Author(s):  
V. Mizuhira ◽  
Y. Futaesaku

Previously we reported that tannic acid is a very effective fixative for proteins including polypeptides. Especially, in the cross section of microtubules, thirteen submits in A-tubule and eleven in B-tubule could be observed very clearly. An elastic fiber could be demonstrated very clearly, as an electron opaque, homogeneous fiber. However, tannic acid did not penetrate into the deep portion of the tissue-block. So we tried Catechin. This shows almost the same chemical natures as that of proteins, as tannic acid. Moreover, we thought that catechin should have two active-reaction sites, one is phenol,and the other is catechole. Catechole site should react with osmium, to make Os- black. Phenol-site should react with peroxidase existing perhydroxide.


Author(s):  
Valerie V. Ernst

During the earliest stage of oocyte development in the limpet, Acmea scutum, Golgi complexes are small, few and randomly dispersed in the cytoplasm. As growth proceeds, the Golgi complexes increase in size and number and migrate to the periphery of the cell. At this time, fibrous structures resembling striated rootlets occur associated with the Golgi complexes. Only one fibrous structure appears to be associated with a Golgi complex.The fibers are periodically cross banded with an average of 4 dense fibrils and 6 lighter fibrils per period (Fig. 1). The cross fibrils have a center to center spacing of about 7 run which appears to be the same as that of the striated rootlets of the gill cilia in this animal.


Author(s):  
Tamotsu Ohno

The energy distribution in an electron; beam from an electron gun provided with a biased Wehnelt cylinder was measured by a retarding potential analyser. All the measurements were carried out with a beam of small angular divergence (<3xl0-4 rad) to eliminate the apparent increase of energy width as pointed out by Ichinokawa.The cross section of the beam from a gun with a tungsten hairpin cathode varies as shown in Fig.1a with the bias voltage Vg. The central part of the beam was analysed. An example of the integral curve as well as the energy spectrum is shown in Fig.2. The integral width of the spectrum ΔEi varies with Vg as shown in Fig.1b The width ΔEi is smaller than the Maxwellian width near the cut-off. As |Vg| is decreased, ΔEi increases beyond the Maxwellian width, reaches a maximum and then decreases. Note that the cross section of the beam enlarges with decreasing |Vg|.


Author(s):  
J.-F. Revol ◽  
Y. Van Daele ◽  
F. Gaill

The only form of cellulose which could unequivocally be ascribed to the animal kingdom is the tunicin that occurs in the tests of the tunicates. Recently, high-resolution solid-state l3C NMR revealed that tunicin belongs to the Iβ form of cellulose as opposed to the Iα form found in Valonia and bacterial celluloses. The high perfection of the tunicin crystallites led us to study its crosssectional shape and to compare it with the shape of those in Valonia ventricosa (V.v.), the goal being to relate the cross-section of cellulose crystallites with the two allomorphs Iα and Iβ.In the present work the source of tunicin was the test of the ascidian Halocvnthia papillosa (H.p.). Diffraction contrast imaging in the bright field mode was applied on ultrathin sections of the V.v. cell wall and H.p. test with cellulose crystallites perpendicular to the plane of the sections. The electron microscope, a Philips 400T, was operated at 120 kV in a low intensity beam condition.


Sign in / Sign up

Export Citation Format

Share Document