Improvement of red light response of Cu2Sn1−xGexS3 solar cells by optimization of CdS buffer layers

2015 ◽  
Vol 118 (15) ◽  
pp. 154502 ◽  
Author(s):  
Mitsutaro Umehara ◽  
Yasuhiko Takeda ◽  
Shin Tajima ◽  
Tomoyoshi Motohiro ◽  
Takenobu Sakai ◽  
...  
1995 ◽  
Vol 377 ◽  
Author(s):  
K. Vasanth ◽  
A. Payne ◽  
B. Crone ◽  
S. Sherman ◽  
M. Jakubowski ◽  
...  

ABSTRACTThe i-layers of the middle and bottom cells in stable triple-junction amorphous silicon solar cells are composed of a-SiGe:H alloys which are graded in composition to enhance performance. We compare modeling and experimental results for three i-layer band gap grading schemes to determine the optimal profile. We find a good correlation between model trends and measured device parameters for all grading schemes. This is encouraging for the use of the model in predictive device design. We find that the highest white and red light performance do not necessarily have the same cell parameter set. Modeling and experiment indicate that thin cells without band gap profile and with suitably designed p/i and n/i buffer layers, have the best red light performance.


Genetics ◽  
2002 ◽  
Vol 160 (2) ◽  
pp. 683-696 ◽  
Author(s):  
Justin O Borevitz ◽  
Julin N Maloof ◽  
Jason Lutes ◽  
Tsegaye Dabi ◽  
Joanna L Redfern ◽  
...  

AbstractWe have mapped quantitative trait loci (QTL) responsible for natural variation in light and hormone response between the Cape Verde Islands (Cvi) and Landsberg erecta (Ler) accessions of Arabidopsis thaliana using recombinant inbred lines (RILs). Hypocotyl length was measured in four light environments: white, blue, red, and far-red light and in the dark. In addition, white light plus gibberellin (GA) and dark plus the brassinosteroid biosynthesis inhibitor brassinazole (BRZ) were used to detect hormone effects. Twelve QTL were identified that map to loci not previously known to affect light response, as well as loci where candidate genes have been identified from known mutations. Some QTL act in all environments while others show genotype-by-environment interaction. A global threshold was established to identify a significant epistatic interaction between two loci that have few main effects of their own. LIGHT1, a major QTL, has been confirmed in a near isogenic line (NIL) and maps to a new locus with effects in all light environments. The erecta mutation can explain the effect of the HYP2 QTL in the blue, BRZ, and dark environments, but not in far-red. LIGHT2, also confirmed in an NIL, has effects in white and red light and shows interaction with GA. The phenotype and map position of LIGHT2 suggest the photoreceptor PHYB as a candidate gene. Natural variation in light and hormone response thus defines both new genes and known genes that control light response in wild accessions.


2011 ◽  
Vol 21 (39) ◽  
pp. 15587 ◽  
Author(s):  
Somnath Dey ◽  
Paola Vivo ◽  
Alexander Efimov ◽  
Helge Lemmetyinen

Author(s):  
Moufdi Hadjab ◽  
Jan-Martin Wagner ◽  
Fayçal Bouzid ◽  
Samah Boudour ◽  
Abderrahim Hadj Larbi ◽  
...  

2021 ◽  
Vol 129 (20) ◽  
pp. 205703
Author(s):  
Mbafan S. Lyam ◽  
Torsten Hölscher ◽  
Matthias Maiberg ◽  
Antonio Cabas-Vidani ◽  
Alejandro Hernandez-Martinez ◽  
...  
Keyword(s):  

1999 ◽  
Vol 557 ◽  
Author(s):  
S.J. Jones ◽  
R. Crucet ◽  
X. Deng ◽  
J. Doehler ◽  
R. Kopf ◽  
...  

AbstractUsing a Gas Jet thin film deposition technique, microcrystalline silicon (μc-Si) materials were prepared at rates as high as 15-20 Å/s. The technique involves the use of a gas jet flow that is subjected to a high intensity microwave source. The quality of the material has been optimized through the variation of a number of deposition conditions including the substrate temperature, the gas flows, and the applied microwave power. The best films were made using deposition rates near 16 Å/s. These materials have been used as i-layers for red light absorbing, nip single-junction solar cells. Using a 610nm cutoff filter which only allows red light to strike the device, pre-light soaked currents as high as 10 mA/cm2 and 2.2-2.3% red-light pre-light soaked peak power outputs have been obtained for cells with i-layer thicknesses near 1 micron. This compares with currents of 10-11 mA/cm2 and 4% initial red-light peak power outputs obtained for high efficiency amorphous silicon germanium alloy (a-SiGe:H) devices. The AM1.5 white light efficiencies for these microcrystalline cells are 5.9-6.0%. While the efficiencies for the a-SiGe:H cells degrade by 15-20% after long term light exposure, the efficiencies for the microcrystalline cells before and after prolonged light exposure are similar, within measurement error. Considering these results, the Gas Jet deposition method is a promising technique for the deposition of μc-Si solar cells due to the ability to achieve reasonable stable efficiencies for cells at i-layer deposition rates (16 Å/s) which make large-scale production economically feasible.


2015 ◽  
Vol 425 ◽  
pp. 162-166 ◽  
Author(s):  
Ryuji Oshima ◽  
Mitsuyuki Yamanaka ◽  
Hitoshi Kawanami ◽  
Isao Sakata ◽  
Koji Matsubara ◽  
...  

2021 ◽  
Vol 258 ◽  
pp. 123932
Author(s):  
Lekha Peedikakkandy ◽  
Ondřej Pavelka ◽  
Martina Alsterová ◽  
Anna Fučíková ◽  
Jakub Dostál ◽  
...  

2012 ◽  
Vol 12 (7) ◽  
pp. 5696-5699 ◽  
Author(s):  
Jaehoon Jeong ◽  
Sungho Nam ◽  
Joonhyeon Kim ◽  
Sungho Woo ◽  
Hwajeong Kim ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document