scholarly journals A comparison of non-local electron transport models for laser-plasmas relevant to inertial confinement fusion

2017 ◽  
Vol 24 (8) ◽  
pp. 082706 ◽  
Author(s):  
M. Sherlock ◽  
J. P. Brodrick ◽  
C. P. Ridgers
1999 ◽  
Vol 61 (2) ◽  
pp. 347-364 ◽  
Author(s):  
O. V. BATISHCHEV ◽  
M. M. SHOUCRI ◽  
A. A. BATISHCHEVA ◽  
I. P. SHKAROFSKY

Fluid descriptions of plasmas, which are usually applied to a collisional plasma, can only be justified for very small Coulomb Knudsen numbers. However, the scrape-off layer (SOL) plasmas of experimental magnetic confinement fusion devices tend to have operational regimes characterized by a Coulomb Knudsen number around 0.1. In interesting detached regimes of an SOL plasma in a tokamak, when the plasma detaches from the limiters or divertors, this number may increase along with the local plasma gradients. Plasma gradients are also known to increase (and thus drive non-local effects) in inertial confinement fusion. Neutrals, which are being produced owing to plasma recombination at the plasma–divertor interface, may be in a mixed collisional regime as well. Thus simultaneous kinetic treatments of plasma and neutral particles with self-consistent evaluation of boundary conditions at the material walls are required. We present a physical model and a numerical scheme, and discuss results of purely kinetic simulations of plasmas and neutrals for actual conditions in the Alcator C-Mod and Tokamak-de-Varennes experimental tokamaks. Results for both steady-state and transient regimes of SOL plasma flow are presented. Our approach, unlike particle-in-cell and Monte Carlo methods, is free from statistical noise.


Author(s):  
C. W. Price ◽  
E. F. Lindsey

Thickness measurements of thin films are performed by both energy-dispersive x-ray spectroscopy (EDS) and x-ray fluorescence (XRF). XRF can measure thicker films than EDS, and XRF measurements also have somewhat greater precision than EDS measurements. However, small components with curved or irregular shapes that are used for various applications in the the Inertial Confinement Fusion program at LLNL present geometrical problems that are not conducive to XRF analyses but may have only a minimal effect on EDS analyses. This work describes the development of an EDS technique to measure the thickness of electroless nickel deposits on gold substrates. Although elaborate correction techniques have been developed for thin-film measurements by x-ray analysis, the thickness of electroless nickel films can be dependent on the plating bath used. Therefore, standard calibration curves were established by correlating EDS data with thickness measurements that were obtained by contact profilometry.


2020 ◽  
Vol 36 ◽  
pp. 100749 ◽  
Author(s):  
R.E. Olson ◽  
R.J. Leeper ◽  
S.H. Batha ◽  
R.R. Peterson ◽  
P.A. Bradley ◽  
...  

2021 ◽  
Vol 28 (3) ◽  
pp. 032713
Author(s):  
Dongguo Kang ◽  
Huasen Zhang ◽  
Shiyang Zou ◽  
Wudi Zheng ◽  
Shaoping Zhu ◽  
...  

2021 ◽  
Vol 92 (7) ◽  
pp. 073505
Author(s):  
T. J. Awe ◽  
L. Perea ◽  
J. C. Hanson ◽  
A. J. York ◽  
D. W. Johnson ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document