Multiplicity results for stationary Kirchhoff problems involving fractional elliptic operator and critical nonlinearity in RN

2018 ◽  
Vol 59 (7) ◽  
pp. 071512
Author(s):  
Yueqiang Song ◽  
Shaoyun Shi
2015 ◽  
Vol 125 ◽  
pp. 699-714 ◽  
Author(s):  
Giuseppina Autuori ◽  
Alessio Fiscella ◽  
Patrizia Pucci

2016 ◽  
Vol 31 (3) ◽  
pp. 47-53
Author(s):  
M.M. Sirazhudinov ◽  
◽  
S.P. Dzhamaludinova ◽  
M.E. Mahmudova ◽  
◽  
...  

2020 ◽  
Vol 10 (1) ◽  
pp. 400-419 ◽  
Author(s):  
Sihua Liang ◽  
Patrizia Pucci ◽  
Binlin Zhang

Abstract In this article, we investigate multiplicity results for Choquard-Kirchhoff type equations, with Hardy-Littlewood-Sobolev critical exponents, $$\begin{array}{} \displaystyle -\left(a + b\int\limits_{\mathbb{R}^N} |\nabla u|^2 dx\right){\it\Delta} u = \alpha k(x)|u|^{q-2}u + \beta\left(\,\,\displaystyle\int\limits_{\mathbb{R}^N}\frac{|u(y)|^{2^*_{\mu}}}{|x-y|^{\mu}}dy\right)|u|^{2^*_{\mu}-2}u, \quad x \in \mathbb{R}^N, \end{array}$$ where a > 0, b ≥ 0, 0 < μ < N, N ≥ 3, α and β are positive real parameters, $\begin{array}{} 2^*_{\mu} = (2N-\mu)/(N-2) \end{array}$ is the critical exponent in the sense of Hardy-Littlewood-Sobolev inequality, k ∈ Lr(ℝN), with r = 2∗/(2∗ − q) if 1 < q < 2* and r = ∞ if q ≥ 2∗. According to the different range of q, we discuss the multiplicity of solutions to the above equation, using variational methods under suitable conditions. In order to overcome the lack of compactness, we appeal to the concentration compactness principle in the Choquard-type setting.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Zhen Zhi ◽  
Lijun Yan ◽  
Zuodong Yang

AbstractIn this paper, we consider the existence of nontrivial solutions for a fractional p-Laplacian equation in a bounded domain. Under different assumptions of nonlinearities, we give existence and multiplicity results respectively. Our approach is based on variational methods and some analytical techniques.


Sign in / Sign up

Export Citation Format

Share Document