SIMP versus level set function as an implicit representation model for structural topology optimization

2020 ◽  
Author(s):  
Nathan ◽  
P. S. Palar ◽  
L. R. Zuhal
Author(s):  
Long Jiang ◽  
Shikui Chen ◽  
Xianfeng David Gu

Abstract Topology optimization has been proved to be an automatic, efficient and powerful tool for structural designs. In recent years, the focus of structural topology optimization has evolved from mono-scale, single material structural designs to hierarchical multimaterial structural designs. In this research, the multi-material structural design is carried out in a concurrent parametric level set framework so that the structural topologies in the macroscale and the corresponding material properties in mesoscale can be optimized simultaneously. The constructed cardinal basis function (CBF) is utilized to parameterize the level set function. With CBF, the upper and lower bounds of the design variables can be identified explicitly, compared with the trial and error approach when the radial basis function (RBF) is used. In the macroscale, the ‘color’ level set is employed to model the multiple material phases, where different materials are represented using combined level set functions like mixing colors from primary colors. At the end of this optimization, the optimal material properties for different constructing materials will be identified. By using those optimal values as targets, a second structural topology optimization is carried out to determine the exact mesoscale metamaterial structural layout. In both the macroscale and the mesoscale structural topology optimization, an energy functional is utilized to regularize the level set function to be a distance-regularized level set function, where the level set function is maintained as a signed distance function along the design boundary and kept flat elsewhere. The signed distance slopes can ensure a steady and accurate material property interpolation from the level set model to the physical model. The flat surfaces can make it easier for the level set function to penetrate its zero level to create new holes. After obtaining both the macroscale structural layouts and the mesoscale metamaterial layouts, the hierarchical multimaterial structure is finalized via a local-shape-preserving conformal mapping to preserve the designed material properties. Unlike the conventional conformal mapping using the Ricci flow method where only four control points are utilized, in this research, a multi-control-point conformal mapping is utilized to be more flexible and adaptive in handling complex geometries. The conformally mapped multi-material hierarchical structure models can be directly used for additive manufacturing, concluding the entire process of designing, mapping, and manufacturing.


2013 ◽  
Vol 136 (1) ◽  
Author(s):  
Karim Hamza ◽  
Mohamed Aly ◽  
Hesham Hegazi

Level-set approaches are a family of domain classification techniques that rely on defining a scalar level-set function (LSF), then carrying out the classification based on the value of the function relative to one or more thresholds. Most continuum topology optimization formulations are at heart, a classification problem of the design domain into structural materials and void. As such, level-set approaches are gaining acceptance and popularity in structural topology optimization. In conventional level set approaches, finding an optimum LSF involves solution of a Hamilton-Jacobi system of partial differential equations with a large number of degrees of freedom, which in turn, cannot be accomplished without gradients information of the objective being optimized. A new approach is proposed in this paper where design variables are defined as the values of the LSF at knot points, then a Kriging model is used sto interpolate the LSF values within the rest of the domain so that classification into material or void can be performed. Perceived advantages of the Kriging-interpolated level-set (KLS) approach include alleviating the need for gradients of objectives and constraints, while maintaining a reasonable number of design variables that is independent from the mesh size. A hybrid genetic algorithm (GA) is then used for solving the optimization problem(s). An example problem of a short cantilever is studied under various settings of the KLS parameters in order to infer the best practice recommendations for tuning the approach. Capabilities of the approach are then further demonstrated by exploring its performance on several test problems.


2018 ◽  
Vol 140 (7) ◽  
Author(s):  
Benliang Zhu ◽  
Rixin Wang ◽  
Hai Li ◽  
Xianmin Zhang

In level-set-based topology optimization methods, the spatial gradients of the level set field need to be controlled to avoid excessive flatness or steepness at the structural interfaces. One of the most commonly utilized methods is to generalize the traditional Hamilton−Jacobi equation by adding a diffusion term to control the level set function to remain close to a signed distance function near the structural boundaries. This study proposed a new diffusion term and built it into the Hamilton-Jacobi equation. This diffusion term serves two main purposes: (I) maintaining the level set function close to a signed distance function near the structural boundaries, thus avoiding periodic re-initialization, and (II) making the diffusive rate function to be a bounded function so that a relatively large time-step can be used to speed up the evolution of the level set function. A two-phase optimization algorithm is proposed to ensure the stability of the optimization process. The validity of the proposed method is numerically examined on several benchmark design problems in structural topology optimization.


Author(s):  
Karim Hamza ◽  
Mohamed Aly ◽  
Hesham Hegazi

Level-set approaches are a family of domain classification techniques that rely on defining a scalar level-set function (LSF), then carrying out the classification based on the value of the function relative to one or more thresholds. Most continuum topology optimization formulations are at heart, a classification problem of the design domain into structural materials and void. As such, level-set approaches are gaining acceptance and popularity in structural topology optimization. In conventional level set approaches, finding an optimum LSF involves solution of a Hamilton-Jacobi system of partial differential equations with a large number of degrees of freedom, which in turn, cannot be accomplished without gradients information of the objective being optimized. A new approach is proposed in this paper where design variables are defined as the explicit values of the LSF at knot points, then a Kriging model is used to interpolate the LSF values within the rest of the domain so that classification into material or void can be performed. Perceived advantages of the explicit level-set (ELS) approach include alleviating the need for gradients of objectives and constraints, while maintaining a reasonable number of design variables that is independent from the mesh size. A hybrid genetic algorithm (GA) is then used for solving the optimization problem(s). An example problem of a short cantilever is studied under various settings of the ELS parameters in order to infer the best practice recommendations for tuning the approach. Capabilities of the approach are then further demonstrated by exploring its performance on several test problems.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Rolando Yera ◽  
Luisina Forzani ◽  
Carlos Gustavo Méndez ◽  
Alfredo E. Huespe

PurposeThis work presents a topology optimization methodology for designing microarchitectures of phononic crystals. The objective is to get microstructures having, as a consequence of wave propagation phenomena in these media, bandgaps between two specified bands. An additional target is to enlarge the range of frequencies of these bandgaps.Design/methodology/approachThe resulting optimization problem is solved employing an augmented Lagrangian technique based on the proximal point methods. The main primal variable of the Lagrangian function is the characteristic function determining the spatial geometrical arrangement of different phases within the unit cell of the phononic crystal. This characteristic function is defined in terms of a level-set function. Descent directions of the Lagrangian function are evaluated by using the topological derivatives of the eigenvalues obtained through the dispersion relation of the phononic crystal.FindingsThe description of the optimization algorithm is emphasized, and its intrinsic properties to attain adequate phononic crystal topologies are discussed. Particular attention is addressed to validate the analytical expressions of the topological derivative. Application examples for several cases are presented, and the numerical performance of the optimization algorithm for attaining the corresponding solutions is discussed.Originality/valueThe original contribution results in the description and numerical assessment of a topology optimization algorithm using the joint concepts of the level-set function and topological derivative to design phononic crystals.


Sign in / Sign up

Export Citation Format

Share Document