Simple extended lattice Boltzmann methods for incompressible viscous single-phase and two-phase fluid flows

2021 ◽  
Vol 33 (3) ◽  
pp. 037118
Author(s):  
Kosuke Suzuki ◽  
Takaji Inamuro ◽  
Aoi Nakamura ◽  
Fuminori Horai ◽  
Kuo-Long Pan ◽  
...  
1998 ◽  
Vol 09 (08) ◽  
pp. 1383-1391 ◽  
Author(s):  
Yu Chen ◽  
Shulong Teng ◽  
Takauki Shukuwa ◽  
Hirotada Ohashi

A model with a volumetric stress tensor added to the Navier–Stokes Equation is used to study two-phase fluid flows. The implementation of such an interface model into the lattice-Boltzmann equation is derived from the continuous Boltzmann BGK equation with an external force term, by using the discrete coordinate method. Numerical simulations are carried out for phase separation and "dam breaking" phenomena.


2011 ◽  
Vol 69 (4) ◽  
pp. 842-858 ◽  
Author(s):  
Yibao Li ◽  
Eunok Jung ◽  
Wanho Lee ◽  
Hyun Geun Lee ◽  
Junseok Kim

2013 ◽  
Vol 300-301 ◽  
pp. 1062-1066
Author(s):  
Yang Yu ◽  
Li Chen ◽  
Jian Hua Lu ◽  
Guo Xiang Hou

Free-surface model with surface tension and wall adhesion(wetting) is a very efficient technique to simulate two-phase flows with high density and viscosity ratios, such as etching and casting processes. In this paper, a conservative surface tension and wall adhesion model based on lattice Boltzmann single-phase free-surface method is proposed. The effectiveness of the model is demonstrated by simulating the flows induced by wall adhesion and surface tension, and filling processes in a 2D cavity.


Sign in / Sign up

Export Citation Format

Share Document