Beam power scale-up in micro-electromechanical systems based multi-beam ion accelerators

2021 ◽  
Vol 92 (10) ◽  
pp. 103301
Author(s):  
Q. Ji ◽  
K. K. Afridi ◽  
T. Bauer ◽  
G. Giesbrecht ◽  
Y. Hou ◽  
...  
2002 ◽  
Author(s):  
Neal R. Fornaciari ◽  
Howard Bender ◽  
Dean Buchenauer ◽  
Jason L. Dimkoff ◽  
Michael P. Kanouff ◽  
...  

2012 ◽  
Vol 9 (9) ◽  
pp. 625-630 ◽  
Author(s):  
Y J Huang ◽  
C Y Tang ◽  
Y P Huang ◽  
S C Huang ◽  
K W Su ◽  
...  

2014 ◽  
Vol 11 (12) ◽  
pp. 125806 ◽  
Author(s):  
J C Tung ◽  
H C Liang ◽  
Y C Lin ◽  
K W Su ◽  
K F Huang ◽  
...  

Author(s):  
L.E. Murr ◽  
J.S. Dunning ◽  
S. Shankar

Aluminum additions to conventional 18Cr-8Ni austenitic stainless steel compositions impart excellent resistance to high sulfur environments. However, problems are typically encountered with aluminum additions above about 1% due to embrittlement caused by aluminum in solid solution and the precipitation of NiAl. Consequently, little use has been made of aluminum alloy additions to stainless steels for use in sulfur or H2S environments in the chemical industry, energy conversion or generation, and mineral processing, for example.A research program at the Albany Research Center has concentrated on the development of a wrought alloy composition with as low a chromium content as possible, with the idea of developing a low-chromium substitute for 310 stainless steel (25Cr-20Ni) which is often used in high-sulfur environments. On the basis of workability and microstructural studies involving optical metallography on 100g button ingots soaked at 700°C and air-cooled, a low-alloy composition Fe-12Cr-5Ni-4Al (in wt %) was selected for scale up and property evaluation.


Author(s):  
Ryo Iiyoshi ◽  
Susumu Maruse ◽  
Hideo Takematsu

Point cathode electron gun with high brightness and long cathode life has been developed. In this gun, a straightened tungsten wire is used as the point cathode, and the tip is locally heated to higher temperatures by electron beam bombardment. The high brightness operation and some findings on the local heating are presented.Gun construction is shown in Fig.l. Small heater assembly (annular electron gun: 5 keV, 1 mA) is set inside the Wehnelt electrode. The heater provides a disk-shaped bombarding electron beam focusing onto the cathode tip. The cathode is the tungsten wire of 0.1 mm in diameter. The tip temperature is raised to the melting point (3,650 K) at the beam power of 5 W, without any serious problem of secondary electrons for the gun operation. Figure 2 shows the cathode after a long time operation at high temperatures, or high brightnesses. Evaporation occurs at the tip, and the tip part retains a conical shape. The cathode can be used for a long period of time. The tip apex keeps the radius of curvature of 0.4 μm at 3,000 K and 0.3 μm at 3,200 K. The gun provides the stable beam up to the brightness of 6.4×106 A/cm2sr (3,150 K) at the accelerating voltage of 50 kV. At 3.4×l06 A/cm2sr (3,040 K), the tip recedes at a slow rate (26 μm/h), so that the effect can be offset by adjusting the Wehnelt bias voltage. The tip temperature is decreased as the tip moves out from the original position, but it can be kept at constant by increasing the bombarding beam power. This way of operation is possible for 10 h. A stepwise movement of the cathode is enough for the subsequent operation. Higher brightness operations with the rapid receding rates of the tip may be improved by a continuous movement of the wire cathode during the operations. Figure 3 shows the relation between the beam brightness, the tip receding rate by evaporation (αis the half-angle of the tip cone), and the cathode life per unit length, as a function of the cathode temperature. The working life of the point cathode is greatly improved by the local heating.


Sign in / Sign up

Export Citation Format

Share Document