Generalization to Novel Images in Upright and Inverted Faces

Perception ◽  
1996 ◽  
Vol 25 (4) ◽  
pp. 443-461 ◽  
Author(s):  
Yael Moses ◽  
Shimon Ullman ◽  
Shimon Edelman

An image of a face depends not only on its shape, but also on the viewpoint, illumination conditions, and facial expression. A face recognition system must overcome the changes in face appearance induced by these factors. Two related questions were investigated: the capacity of the human visual system to generalize the recognition of faces to novel images, and the level at which this generalization occurs. This problem was approached by comparing the identification and generalization capacity for upright and inverted faces. For upright faces, remarkably good generalization to novel conditions was found. For inverted faces, the generalization to novel views was significantly worse for both new illumination and viewpoint, although the performance on the training images was similar to that on the upright condition. The results indicate that at least some of the processes that support generalization across viewpoint and illumination are neither universal (because subjects did not generalize as easily for inverted faces as for upright ones) nor strictly object specific (because in upright faces nearly perfect generalization was possible from a single view, by itself insufficient for building a complete object-specific model). It is proposed that generalization in face recognition occurs at an intermediate level that is applicable to a class of objects, and that at this level upright and inverted faces initially constitute distinct object classes.

Symmetry ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 157 ◽  
Author(s):  
Saad Allagwail ◽  
Osman Gedik ◽  
Javad Rahebi

In the practical reality of face recognition applications, the human face can have only a limited number of training images. However, it is known that, in general, increasing the number of training images also increases the performance of face recognition systems. In this case, a new set of training samples can be generated from the original samples, using the symmetry property of the face. Although many face recognition methods have been proposed in the literature, a robust face recognition system is still a challenging task. In this paper, recognition performance was improved by using the property of face symmetry. Moreover, the effects of illumination and pose variations were reduced. A Two-Dimensional Discrete Wavelet Transform, based on the Local Binary Pattern, which is a new approach for face recognition using symmetry, has been presented. The method has three main stages, preprocessing, feature extraction, and classification. A Two-Dimensional Discrete Wavelet Transform with Single-Level and Gaussian Low-Pass Filter were used, separately, for preprocessing. The Local Binary Pattern, Gray Level Co-Occurrence Matrix, and the Gabor filter were used for feature extraction, and the Euclidean Distance was used for classification. The proposed method was implemented and evaluated using the Olivetti Research Laboratory (ORL) and Yale datasets. This study also examined the importance of the preprocessing stage in a face recognition system. The experimental results showed that the proposed method had a recognition accuracy of 100%, for both the ORL and Yale datasets, and these recognition rates were higher than the methods in the literature.


2020 ◽  
Vol 1601 ◽  
pp. 052011
Author(s):  
Yong Li ◽  
Zhe Wang ◽  
Yang Li ◽  
Xu Zhao ◽  
Hanwen Huang

Sign in / Sign up

Export Citation Format

Share Document