scholarly journals Is polyethylene glycol innocuous to the rumen bacterial community? A preliminary in vitro study

2011 ◽  
Vol 51 (11) ◽  
pp. 990 ◽  
Author(s):  
A. Belenguer ◽  
G. Hervás ◽  
P. G. Toral ◽  
M. Fondevila ◽  
P. Frutos

Polyethylene glycol (PEG) is a polymer that is widely used in nutritional studies examining the effect of tannins on ruminal fermentation. There is no information however on its potential effect on the structure of the rumen bacterial community. Therefore, the aim herein was to investigate its effect on rumen bacterial profile, using an in vitro batch culture experiment with three substrates (alfalfa hay, maize grain, and a combination of both) to simulate three different rumen environments, treated with or without PEG. Rumen fluid was collected from four cannulated sheep and pooled to inoculate the cultures, which were run at 39°C for 22 h. At the end of the incubation, samples were immediately frozen for microbial DNA extraction. Terminal restriction fragment length polymorphism analysis of 16S rRNA genes revealed that, although there was a high similarity in the fragments detected in the cultures with or without PEG, their relative abundances suggested that PEG might induce some changes in the bacterial community structure when a starch-rich substrate (e.g. maize) is assayed. Furthermore, the relative frequency of some abundant fragments, such as one compatible with bacteria of the phylum Bacteroidetes detected with the enzyme HhaI, and another that may match microorganisms of the genus Ruminococcus obtained with the enzyme MspI, was increased when PEG was added to maize-supplied microbial cultures. These results suggest that the use of PEG in batch cultures may not be as innocuous to rumen bacterial populations as previously described regarding ruminal fermentation, and might be relevant to studies using this polymer to examine the effect of tannins on rumen microbiota.

2020 ◽  
Author(s):  
Chuntao Yin ◽  
Juan M. Casa Vargas ◽  
Daniel C. Schlatter ◽  
Christina H. Hagerty ◽  
Scot H. Hulbert ◽  
...  

Abstract Background: Microbes benefit plants by increasing nutrient availability, producing plant growth hormones, and protecting against pathogens. However, it is largely unknown how plants change root microbial communities. Results: In this study, we used a multi-cycle selection system and infection by the soilborne fungal pathogen Rhizoctonia solani AG8 (hereafter AG8) to examine how plants impact the rhizosphere bacterial community and recruit beneficial microorganisms to suppress soilborne fungal pathogens and promote plant growth. Successive plantings dramatically enhanced disease suppression on susceptible wheat cultivars to AG8 in the greenhouse. Accordingly, analysis of the rhizosphere soil microbial community using deep sequencing of 16S rRNA genes revealed distinct bacterial community profiles assembled over successive wheat plantings. Moreover, the cluster of bacterial communities formed from the AG8-infected rhizosphere was distinct from those without AG8 infection. Interestingly, the bacterial communities from the rhizosphere with the lowest wheat root disease gradually separated from those with the worst wheat root disease over planting cycles. Successive monocultures and application of AG8 increased the abundance of some bacterial genera which have potential antagonistic activities, such as Chitinophaga, Pseudomonas, Chryseobacterium, and Flavobacterium, and a group of plant growth-promoting (PGP) and nitrogen-fixing microbes, including Pedobacter, Variovorax, and Rhizobium. Furthermore, 47 bacteria isolates belong to 35 species were isolated. Among them, eleven and five exhibited antagonistic activities to AG8 and Rhizoctonia oryzae in vitro, respectively. Notably, Janthinobacterium displayed broad antagonism against the soilborne pathogens Pythium ultimum, AG8, and R. oryzae in vitro, and disease suppressive activity to AG8 in soil. Conclusions: Our results demonstrated that successive wheat plantings and pathogen infection can shape the rhizosphere microbial communities and specifically accumulate a group of beneficial microbes. Our findings suggest that soil community selection may offer the potential for addressing agronomic concerns associated with plant diseases and crop productivity.


2011 ◽  
Vol 2011 ◽  
pp. 1-9 ◽  
Author(s):  
Jennifer L. Salerno ◽  
Dan R. Reineman ◽  
Ruth D. Gates ◽  
Michael S. Rappé

Evidence points to a link between environmental stressors, coral-associated bacteria, and coral disease; however, few studies have examined the details of this relationship under tightly controlled experimental conditions. To address this gap, an array of closed-system, precision-controlled experimental aquaria were used to investigate the effects of an abrupt 1°C above summer ambient temperature increase on the bacterial community structure and photophysiology ofPorites compressacorals. While the temperature treatment rapidly impacted the photophysiology of the coral host, it did not elicit a statistically significant shift in bacterial community structure from control, untreated corals as determined by terminal restriction fragment length polymorphism analysis of 16S rRNA genes. Two of three coral colonies harbored more closely related bacterial communities at the time of collection and, despite statistically significant shifts in bacterial community structure for both control and treatment corals during the 10-day acclimation period, maintained this relationship over the course of the experiment. The experimental design used in this study proved to be a robust, reproducible system for investigating coral microbiology in an aquarium setting.


Author(s):  
Rittikeard Prachumchai ◽  
Anusorn Cherdthong ◽  
Metha Wanapat

The current work aimed to screen the ruminal cyanide-utilizing bacteria and evaluate the influence of fresh cassava root (FCR) and pellets containing high sulfur (PELFUR) on cyanide content, kinetics of gas, in vitro degradability, and ruminal fermentation. The experiment was conducted in a Completely randomized design (CRD) for a screening of cyanide-utilizing bacteria and the dietary treatments were the level of cyanide at 0, 150, 300, and 450 ppm. A 5 × 3 factorial arrangement in a Completely randomized design was used for in vitro study. Factor A was the level of FCR at 0, 260, 350, 440, and 530 g/kg of 0.5 g dry matter (DM) substrate, and factor B was the level of PELFUR at 0, 15, and 30 g/kg DM substrate. Adding different doses of cyanide significantly affected cyanide-utilizing rumen bacterial growth (p < 0.05). Increasing the concentration of cyanide from 0 to 150 and 150 to 300 ppm, resulted in an increase in cyanide-utilizing rumen bacteria of 38.2% and 15.0%, respectively. Increasing the FCR level to more than 260 g/kg of 0.5 g substrate could increase cumulative gas production (p < 0.05), whereas increasing doses of PELFUR from 15 to 30 g/kg increased the cumulative gas production when compared with that of 0 g/kg PELFUR (p < 0.05). Cyanide concentration in rumen fluid decreased with PELFUR (p < 0.05) supplementation. Degradability of in vitro dry matter and organic matter following incubation increased at 12 and 24 h due to PELFUR supplementation with FCR and increased additionally with 15 g/kg PELFUR (p < 0.05) in 440 g/kg FCR. Proportions of the total volatile fatty acids, acetic acid (C2), propionic acid (C3), and butyric acid, as well as the ratio of C2 to C3 among supplementations with FCR (p < 0.05) were significantly different. As the proportion of FCR increased to 530 g/kg of the substrate, the volume of C3 increased by 14.6%. This is the first finding of bacteria in the rumen capable of utilizing cyanide, and cyanide might function as a nitrogen source for bacterial cell synthesis. Inclusion of FCR of 530 g/kg with 30 g/kg PELFUR could increase the cumulative gas production, the bacterial population, the in vitro degradability, the proportion of C3, and the rate of the disappearance of cyanide.


2004 ◽  
Vol 55 (11) ◽  
pp. 1125 ◽  
Author(s):  
P. Frutos ◽  
G. Hervás ◽  
F. J. Giráldez ◽  
A. R. Mantecón

Abstract. Batch cultures of rumen microorganisms, using rumen fluids from 4 ruminant species, sheep, goats, cows, and deer, were used to study the ability of polyethylene-glycol (PEG 6000) to inhibit the effect of 2 types of tannins, quebracho (QUE, a condensed tannin) and tannic acid (TA, a hydrolysable tannin) on several in vitro rumen fermentation characteristics. Both QUE and TA were able to impair ruminal fermentation (they reduced gas production, extent of degradation, ammonia-N, and volatile fatty acid concentrations, etc.; P < 0.05), with differences depending on the inoculum donor. The clearest effect of tannins was the reduction of the rates of fermentation, which was observed in all species (P < 0.05). The detrimental effects of tannins were removed by the presence of PEG in most cases, but there were important variations and noticeable exceptions. Thus, for instance, PEG failed to revert the negative effect of TA on the rate of fermentation and the extent of degradation (P < 0.05). The extent of the limited ability of PEG to completely inhibit the negative effects of tannins on in vitro ruminal fermentation seems to depend both on the type of tannin and the species of the rumen inoculum donor.


Microbiome ◽  
2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Chuntao Yin ◽  
Juan M. Casa Vargas ◽  
Daniel C. Schlatter ◽  
Christina H. Hagerty ◽  
Scot H. Hulbert ◽  
...  

Abstract Background Microbes benefit plants by increasing nutrient availability, producing plant growth hormones, and protecting against pathogens. However, it is largely unknown how plants change root microbial communities. Results In this study, we used a multi-cycle selection system and infection by the soilborne fungal pathogen Rhizoctonia solani AG8 (hereafter AG8) to examine how plants impact the rhizosphere bacterial community and recruit beneficial microorganisms to suppress soilborne fungal pathogens and promote plant growth. Successive plantings dramatically enhanced disease suppression on susceptible wheat cultivars to AG8 in the greenhouse. Accordingly, analysis of the rhizosphere soil microbial community using deep sequencing of 16S rRNA genes revealed distinct bacterial community profiles assembled over successive wheat plantings. Moreover, the cluster of bacterial communities formed from the AG8-infected rhizosphere was distinct from those without AG8 infection. Interestingly, the bacterial communities from the rhizosphere with the lowest wheat root disease gradually separated from those with the worst wheat root disease over planting cycles. Successive monocultures and application of AG8 increased the abundance of some bacterial genera which have potential antagonistic activities, such as Chitinophaga, Pseudomonas, Chryseobacterium, and Flavobacterium, and a group of plant growth-promoting (PGP) and nitrogen-fixing microbes, including Pedobacter, Variovorax, and Rhizobium. Furthermore, 47 bacteria isolates belong to 35 species were isolated. Among them, eleven and five exhibited antagonistic activities to AG8 and Rhizoctonia oryzae in vitro, respectively. Notably, Janthinobacterium displayed broad antagonism against the soilborne pathogens Pythium ultimum, AG8, and R. oryzae in vitro, and disease suppressive activity to AG8 in soil. Conclusions Our results demonstrated that successive wheat plantings and pathogen infection can shape the rhizosphere microbial communities and specifically accumulate a group of beneficial microbes. Our findings suggest that soil community selection may offer the potential for addressing agronomic concerns associated with plant diseases and crop productivity.


2021 ◽  
Vol 8 (1) ◽  
pp. 10
Author(s):  
Rittikeard Prachumchai ◽  
Anusorn Cherdthong ◽  
Metha Wanapat

Two experiments were undertaken to screen for ruminal cyanide-utilizing bacteria (Experiment 1), and to evaluate the influence of fresh cassava root (FCR) and pellets containing high sulfur (PELFUR) on cyanide content, gas production parameters, in vitro degradability, and ruminal fermentation (Experiment 2). Experiment 1 was conducted in a completely randomized design (CRD) for the screening of cyanide-utilizing bacteria and the dietary treatments consisted of cyanide at 0, 150, 300, and 450 ppm. In Experiment 2, a 5 × 3 factorial arrangement in a completely randomized design was used for the in vitro study. Factor A was the level of FCR at 0, 260, 350, 440, and 530 g/kg of dry matter (DM) substrate, and factor B was the level of PELFUR at 0, 15, and 30 g/kg DM substrate. In Experiment 1, adding different doses of cyanide significantly affected cyanide-utilizing rumen bacterial growth (p < 0.05). Increasing the concentration of cyanide from 0 to 150 and 150 to 300 ppm resulted in increases in cyanide-utilizing rumen bacteria of 38.2% and 15.0%, respectively. In Experiment 2, no interaction effects were found between FCR and PELFUR doses on gas production parameters (p > 0.05). Increasing the FCR level to more than 260 g/kg of DM substrate could increase cumulative gas production (p < 0.05). Increasing doses of PELFUR from 15 to 30 g/kg increased the cumulative gas production when compared with that of 0 g PELFUR/kg of DM substrate (p < 0.05). The cyanide concentration in rumen fluid decreased with PELFUR (p < 0.05) supplementation. Degradability of in vitro DM and organic matter following incubation increased at 12 and 24 h due to PELFUR supplementation with FCR and increased additionally with 15 g PELFUR/kg of DM substrate (p < 0.05) in 440 g FCR/kg of DM substrate. Proportions of the total volatile fatty acids, acetic acid (C2), propionic acid (C3), and butyric acid among supplementations with FCR (p < 0.05) were significantly different. In conclusion, the present results represent the first finding of bacteria in the rumen that are capable of utilizing cyanide, and suggests that cyanide might function as a nitrogen source for bacterial cell synthesis. The inclusion of FCR of 530 g/kg with 30 g PELFUR/kg of DM substrate could increase the cumulative gas production, the bacterial population, the in vitro degradability, the proportion of C3, and the rate of the disappearance of cyanide.


2020 ◽  
Author(s):  
Chuntao Yin ◽  
Juan M. Casa Vargas ◽  
Daniel C. Schlatter ◽  
Christina H. Hagerty ◽  
Scot H. Hulbert ◽  
...  

Abstract Background: Microbes benefit plants by increasing nutrient availability, producing plant growth hormones, and protecting against pathogens. However, it is largely unknown how plants change root microbial communities.Results: In this study, we used a multi-cycle selection system and infection by the soilborne fungal pathogen Rhizoctonia solani AG8 (hereafter AG8) to examine how plants impact the rhizosphere bacterial community and recruit beneficial microorganisms to suppress soilborne fungal pathogens and promote plant growth. Successive plantings dramatically enhanced disease suppression on susceptible wheat cultivars to AG8 in the greenhouse. Accordingly, analysis of the rhizosphere soil microbial community using deep sequencing of 16S rRNA genes revealed distinct bacterial community profiles assembled over successive wheat plantings. Moreover, the cluster of bacterial communities formed from the AG8-infected rhizosphere was distinct from those without AG8 infection. Interestingly, the bacterial communities from the rhizosphere with the lowest wheat root disease gradually separated from those with the worst wheat root disease over planting cycles. Successive monocultures and application of AG8 increased the abundance of some bacterial genera which have potential antagonistic activities, such as Chitinophaga, Pseudomonas, Chryseobacterium, and Flavobacterium, and a group of plant growth-promoting (PGP) and nitrogen-fixing microbes, including Pedobacter, Variovorax, and Rhizobium. Furthermore, 47 bacteria isolates belong to 35 species were isolated. Among them, eleven and five exhibited antagonistic activities to AG8 and Rhizoctonia oryzae in vitro, respectively. Notably, Janthinobacterium displayed broad antagonism against the soilborne pathogens Pythium ultimum, AG8, and R. oryzae in vitro, and disease suppressive activity to AG8 in soil.Conclusions: Our results demonstrated that successive wheat plantings and pathogen infection can shape the rhizosphere microbial communities and specifically accumulate a group of beneficial microbes. Our findings suggest that soil community selection may offer the potential for addressing agronomic concerns associated with plant diseases and crop productivity.


2020 ◽  
Author(s):  
Timothy Paulitz ◽  
Chuntao Yin ◽  
Juan M. Casa Vargas ◽  
Daniel C. Schlatter ◽  
Christina H. Hagerty ◽  
...  

Abstract Background: Microbes benefit plants by increasing nutrient availability, producing plant growth hormones, and protecting against pathogens. However, it is largely unknown how plants change root microbial communities. Results: In this study, we used a multi-cycle selection system and infection by the soilborne fungal pathogen Rhizoctonia solani AG8 (hereafter AG8) to examine how plants impact the rhizosphere bacterial community and recruit beneficial microorganisms to suppress soilborne fungal pathogens and promote plant growth. Successive plantings dramatically enhanced disease suppression on susceptible wheat cultivars to AG8 in the greenhouse. Accordingly, analysis of the rhizosphere soil microbial community using deep sequencing of 16S rRNA genes revealed distinct bacterial community profiles assembled over successive wheat plantings. Moreover, the cluster of bacterial communities formed from the AG8-infected rhizosphere was distinct from those without AG8 infection. Interestingly, the bacterial communities from the rhizosphere with the lowest wheat root disease gradually separated from those with the worst wheat root disease over planting cycles. Successive monocultures and application of AG8 increased the abundance of some bacterial genera which have potential antagonistic activities, such as Chitinophaga, Pseudomonas, Chryseobacterium, and Flavobacterium, and a group of plant growth-promoting (PGP) and nitrogen-fixing microbes, including Pedobacter, Variovorax, and Rhizobium. Furthermore, 47 bacteria isolates belong to 35 species were isolated. Among them, eleven and five exhibited antagonistic activities to AG8 and Rhizoctonia oryzae in vitro, respectively. Notably, Janthinobacterium displayed broad antagonism against the soilborne pathogens Pythium ultimum, AG8, and R. oryzae in vitro, and disease suppressive activity to AG8 in soil. Conclusions: Our results demonstrated that successive wheat plantings and pathogen infection can shape the rhizosphere microbial communities and specifically accumulate a group of beneficial microbes. Our findings suggest that soil community selection may offer the potential for addressing agronomic concerns associated with plant diseases and crop productivity.


2015 ◽  
Vol 81 (19) ◽  
pp. 6901-6914 ◽  
Author(s):  
Feifei Sun ◽  
Xiaoli Zhang ◽  
Qianqian Zhang ◽  
Fanghua Liu ◽  
Jianping Zhang ◽  
...  

ABSTRACTSeagrass colonization changes the chemistry and biogeochemical cycles mediated by microbes in coastal sediments. In this study, we molecularly characterized the diazotrophic assemblages and entire bacterial community in surface sediments of aZostera marina-colonized coastal lagoon in northern China. Higher nitrogenase gene (nifH) copy numbers were detected in the sediments from the vegetated region than in the sediments from the unvegetated region nearby. ThenifHphylotypes detected were mostly affiliated with theGeobacteraceae,Desulfobulbus,Desulfocapsa, andPseudomonas. Redundancy analysis based on terminal restriction fragment length polymorphism analysis showed that the distribution ofnifHgenotypes was mostly shaped by the ratio of total organic carbon to total organic nitrogen, the concentration of cadmium in the sediments, and the pH of the overlying water. High-throughput sequencing and phylogenetic analyses of bacterial 16S rRNA genes also indicated the presence ofGeobacteraceaeandDesulfobulbaceaephylotypes in these samples. A comparison of these results with those of previous studies suggests the prevalence and predominance of iron(III)-reducingGeobacteraceaeand sulfate-reducingDesulfobulbaceaediazotrophs in coastal sedimentary environments. Although the entire bacterial community structure was not significantly different between these two niches,Desulfococcus(Deltaproteobacteria) andAnaerolineae(Chloroflexi) presented with much higher proportions in the vegetated sediments, andFlavobacteriaceae(Bacteroidetes) occurred more frequently in the bare sediments. These data suggest that the high bioavailability of organic matter (indicated by relatively lower carbon-to-nitrogen ratios) and the less-reducing anaerobic condition in vegetated sediments may favorDesulfococcusandAnaerolineaelineages, which are potentially important populations in benthic carbon and sulfur cycling in the highly productive seagrass ecosystem.


2021 ◽  
Vol 99 (Supplement_3) ◽  
pp. 446-447
Author(s):  
Natasha L Bell ◽  
Daisy A Gonzalez ◽  
Kendrah DeLeon

Abstract The effect of electrolyzed reduced water consumption by cattle is not well defined. The objective of this study was to evaluate the effect of electrolyzed reduced water on intake, in vitro true digestibility (IVTD), ORP and pH in four ruminally cannulated steers (4 Bos taurus; 317 kg BW). Steers were subjected to a two period (14 d), two treatment crossover design. Treatment included: 1) standard water (CON; pH = 7.0 ± 1.0) or 2) electrolyzed reduced water (ERW; pH = 9.0 ± 1.0). The project comprised of two studies where the effects of ERW were observed for steers consuming a roughage diet (phase 1) or concentrate diet (phase 2). During Phase 1, animals were provided bermudagrass hay ad libitum. A 14 d transition period followed phase 1 to allow transition of diets. In phase 2, animals were maintained on a concentrate diet. During each period, d 1–8 served as a treatment adaptation phase, d 9–13 allowed for measures of intake and digestion, and rumen fluid was collected at h 0, 2, 4, 8, and 12 after feeding on d 14 for VFA, pH and ORP analysis. Data were analyzed using the MIXED procedure of SAS 9.4 (SAS Inst. Inc., Cary, NC). Intake, digestion, and ruminal fermentation parameters were not different for CON vs ERW steers (P ≥ 0.06). Analysis of VFA data have not been finalized and will be reported later. Results indicate that ERW has no effect on intake, digestion or ruminal fermentation parameters of steers consuming roughage or concentrate diets.


Sign in / Sign up

Export Citation Format

Share Document