Manipulating the rumen microbiome to address challenges facing Australasian dairy farming

2020 ◽  
Vol 60 (1) ◽  
pp. 36
Author(s):  
Catherine Stanton ◽  
Sinead Leahy ◽  
Bill Kelly ◽  
R. Paul Ross ◽  
Graeme Attwood

As dairy production systems expand globally, there is an increasing need to reduce the impact of dairy wastes on the environment by decreasing urinary N output and reducing emissions of green-house gasses (GHG). An understanding of rumen microbiome composition can result in the development of strategies that reduce methane emissions and nitrogen leakage, ultimately lowering the impact of dairying on the environment, while improving animal productivity. The strongest driver of the composition of the rumen microbiome was found to be the diet of the host animal. Thus, dietary manipulation offers a viable solution to alter the microbiome to address present-day challenges faced by the dairy industry. In the present review, we discuss such strategies and provide insight into rumen microbiome changes that have resulted in reduced GHG emissions and improved animal productivity.

2021 ◽  
Author(s):  
Elsbe von der Lancken ◽  
Victoria Nasser ◽  
Katharina Hey ◽  
Stefan Siebert ◽  
Ana Meijide

<p>The need to sustain global food demand while mitigating greenhouse gases (GHG) emissions is a challenge for agricultural production systems. Since the reduction of GHGs has never been a breeding target, it is still unclear to which extend different crop varieties will affect GHG emissions. The objective of this study was to evaluate the impact of N-fertilization and of the use of growth regulators applied to three historical and three modern varieties of winter wheat on the emissions of the three most important anthropogenic GHGs, i.e. carbon dioxide (CO<sub>2</sub>), methane (CH<sub>4</sub>) and nitrous oxide (N<sub>2</sub>O). Furthermore, we aimed at identifying which combination of cultivars and management practises could mitigate GHG emissions in agricultural systems without compromising the yield. GHG measurements were performed using the closed chamber method in a field experiment located in Göttingen (Germany) evaluating three historical and three modern winter wheat varieties, with or without growth regulators under two fertilization levels (120 and 240 kg nitrogen ha<sup>-1</sup>). GHG measurements were carried out for 2 weeks following the third nitrogen fertilizer application (where one third of the total nitrogen was applied), together with studies on the evolution of mineral nitrogen and dissolved organic carbon in the soil. Modern varieties showed significantly higher CO<sub>2</sub> emissions (i.e. soil and plant respiration; +23 %) than historical varieties. The soils were found to be a sink for CH<sub>4,</sub> but CH<sub>4</sub> fluxes were not affected by the different treatments. N<sub>2</sub>O emissions were not significantly influenced by the variety age or by the growth regulators, and emissions increased with increasing fertilization level. The global warming potential (GWP) for the modern varieties was 7284.0 ± 266.9 kg CO<sub>2-eq</sub> ha<sup>-1</sup>. Even though the GWP was lower for the historic varieties (5939.5 ± 238.2 kg CO<sub>2</sub>-<sub>eq</sub> ha<sup>-1</sup>), their greenhouse gas intensity (GHGI), which relates GHG and crop yield, was larger (1.5 ± 0.3 g CO<sub>2</sub>-<sub>eq</sub> g<sup>-1</sup> grain), compared to the GHGI of modern varieties (0.9 ± 0.0 g CO<sub>2</sub>-<sub>eq</sub> g<sup>-1</sup> grain), due to the much lower grain yield in the historic varieties. Our results suggest that in order to mitigate GHG emissions without compromising the grain yield, the best management practise is to use modern high yielding varieties with growth regulators and a fertilization scheme according to the demand of the crop.</p>


2013 ◽  
Vol 151 (5) ◽  
pp. 714-726 ◽  
Author(s):  
A. M. CLARKE ◽  
P. BRENNAN ◽  
P. CROSSON

SUMMARYIn Ireland, the largest contributor of greenhouse gas (GHG) emissions is agriculture. The objective of the current study was to evaluate the impact of stocking intensities of beef cattle production systems on technical and economic performance and GHG emissions. A bioeconomic model of Irish suckler beef production systems was used to generate scenarios and to evaluate their technical and economic performance. To model the impact of each scenario on GHG emissions, the output of the bioeconomic model was used as an inventory analysis in a life-cycle assessment model and various GHG emission factors were integrated with the production profile. All the estimated GHG emissions were converted to their 100-year global warming potential carbon dioxide equivalent (CO2e). The scenarios modelled were bull/heifer and steer/heifer suckler beef production systems at varying stocking intensities. According to policy constraints, stocking intensities were based on the excretion of organic nitrogen (N), which varied depending on animal category. Stocking intensity was increased by increasing fertilizer N application rates. Carcass output and profitability increased with increasing stocking intensity. At a stocking intensity of 150 kg N/ha total emissions were lowest when expressed per kg of beef carcass (20·1 kg CO2e/kg beef) and per hectare (9·2 tCO2e/ha) in the bull/heifer system. Enteric fermentation was the greatest source of GHG emissions and ranged from 0·49 to 0·47 of total emissions with increasing stocking intensity for both production systems. The current study shows that increasing stocking intensity via increased fertilizer N application rates leads to increased profitability on beef farms with only modest increases in GHG emissions.


Animals ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 945
Author(s):  
Alexandra Sintori ◽  
Irene Tzouramani ◽  
Angelos Liontakis

Dairy goat farming is an important agricultural activity in the Mediterranean region. In Greece the activity offers occupation and income to thousands of families mainly located in mountainous and semi-mountainous areas of the country where it utilizes low productivity pastures and shrub lands. Furthermore, goats are more resilient to climate changes compared to other species, and are often characterized as ideal for keeping in drought areas. However, there is still limited evidence on total greenhouse gases (GHG) emitted from goat farms and their mitigation potential. In this context, this study aims to estimate GHG emissions of goat farms in Greece and explore their abatement options using an economic optimization model. Three case studies are explored i.e., an extensive, a semi-intensive and an intensive goat farm that correspond to the main goat production systems identified in Greece. The analysis aims to assess total GHGs as well as the impact of abatement on the structures, gross margins and labor inputs of the farms under investigation. The issue of the marginal abatement cost is also addressed. The results indicate that the extensive farm causes higher emissions/kg of milk produced (4.08 kg CO2-eq) compared to the semi-intensive and intensive farms (2.04 kg and 1.82 kg of CO2-equivelants, respectively). The results also emphasize the higher marginal abatement cost of the intensive farm. In all farm types, abatement is achieved primarily through the reduction of the livestock capital and secondarily by other appropriate farming practices, like substitution of purchased feed with homegrown feed.


2015 ◽  
Vol 33 (3) ◽  
pp. 103-109 ◽  
Author(s):  
Dewayne L. Ingram ◽  
Charles R. Hall

Component input materials and activities of a model pot-in-pot (PIP) production system were analyzed using life cycle assessment methods. The impact of each component on global warming potential (GWP; kilograms of CO2-equivalent), or carbon footprint, and variable production costs was determined for a 5 cm caliper Acer rubrum L. ‘October Glory’ in a #25 container. Total greenhouse gas emissions (GHG) of inputs and processes at the nursery gate for a defined model system were 15.317 kg CO2e. Carbon sequestration weighted over a 100-year assessment period was estimated to be 4.575 kg CO2, yielding a nursery gate GWP of 10.742 kg CO2e. The major contridbutors to the GWP at the nursery gate were the substrate, production container, the 1.8 m (6 ft), branched, bare root liner, PIP system installation, and fertilization while the liner and production container also contributed significantly to the variable costs. Input materials and labor constituted about 76 and 21% of variable costs, respectively. Unlike field production systems, equipment use in PIP production accounted for only 13% of GHG emissions and 2% of variable costs.


2019 ◽  
Vol 446 (1-2) ◽  
pp. 163-177 ◽  
Author(s):  
Arlete S. Barneze ◽  
Jeanette Whitaker ◽  
Niall P. McNamara ◽  
Nicholas J. Ostle

Abstract Aims Grasslands are important agricultural production systems, where ecosystem functioning is affected by land management practices. Grass-legume mixtures are commonly cultivated to increase grassland productivity while reducing the need for nitrogen (N) fertiliser. However, little is known about the effect of this increase in productivity on greenhouse gas (GHG) emissions in grass-legume mixtures. The aim of this study was to investigate interactions between the proportion of legumes in grass-legume mixtures and N-fertiliser addition on productivity and GHG emissions. We tested the hypotheses that an increase in the relative proportion of legumes would increase plant productivity and decrease GHG emissions, and the magnitude of these effects would be reduced by N-fertiliser addition. Methods This was tested in a controlled environment mesocosm experiment with one grass and one legume species grown in mixtures in different proportions, with or without N-fertiliser. The effects on N cycling processes were assessed by measurement of above- and below-ground biomass, shoot N uptake, soil physico-chemical properties and GHG emissions. Results Above-ground productivity and shoot N uptake were greater in legume-grass mixtures compared to grass or legume monocultures, in fertilised and unfertilised soils. However, we found no effect of legume proportion on N2O emissions, total soil N or mineral-N in fertilised or unfertilised soils. Conclusions This study shows that the inclusion of legumes in grass-legume mixtures positively affected productivity, however N cycle were in the short-term unaffected and mainly affected by nitrogen fertilisation. Legumes can be used in grassland management strategies to mitigate climate change by reducing crop demand for N-fertilisers.


Author(s):  
Lily N Edwards-Callaway ◽  
M Caitlin Cramer ◽  
Caitlin N Cadaret ◽  
Elizabeth J Bigler ◽  
Terry E Engle ◽  
...  

ABSTRACT Shade is a mechanism to reduce heat load providing cattle with an environment supportive of their welfare needs. Although heat stress has been extensively reviewed, researched, and addressed in dairy production systems, it has not been investigated in the same manner in the beef cattle supply chain. Like all animals, beef cattle are susceptible to heat stress if they are unable to dissipate heat during times of elevated ambient temperatures. There are many factors that impact heat stress susceptibility in beef cattle throughout the different supply chain sectors, many of which relate to the production system, i.e. availability of shade, microclimate of environment, and nutrition management. The results from studies evaluating the effects of shade on production and welfare are difficult to compare due to variation in structural design, construction materials used, height, shape, and area of shade provided. Additionally, depending on operation location, shade may or may not be beneficial during all times of the year, which can influence the decision to make shade a permanent part of management systems. Shade has been shown to lessen the physiologic response of cattle to heat stress. Shaded cattle exhibit lower respiration rates, body temperatures, and panting scores compared to un-shaded cattle in weather that increases the risk of heat stress. Results from studies investigating the provision of shade indicate that cattle seek shade in hot weather. The impact of shade on behavioral patterns is inconsistent in the current body of research, some studies indicating shade provision impacts behavior and other studies reporting no difference between shaded and un-shaded groups. Analysis of performance and carcass characteristics across feedlot studies demonstrated that shaded cattle had increased ADG, improved feed efficiency, HCW, and dressing percentage when compared to cattle without shade. Despite the documented benefits of shade, current industry statistics, although severely limited in scope, indicate low shade implementation rates in feedlots and data in other supply chain sectors do not exist. Industry guidelines and third party on-farm certification programs articulate the critical need for protection from extreme weather but are not consistent in providing specific recommendations and requirements. Future efforts should include: updated economic analyses of cost versus benefit of shade implementation, exploration of producer perspectives and needs relative to shade, consideration of shade impacts in the cow-calf and slaughter plant segments of the supply chain, and integration of indicators of affective (mental) state and preference in research studies to enhance the holistic assessment of cattle welfare.


Sexualities ◽  
2020 ◽  
pp. 136346072098169
Author(s):  
Aidan McKearney

This article focuses on the experiences of gay men in the rural west and northwest region of Ireland, during a period of transformational social and political change in Irish society. These changes have helped facilitate new forms of LGBTQI visibility, and local radicalism in the region. Same-sex weddings, establishment of rural LGBT groups and marching under an LGBT banner at St Patricks Day parades would have been unthinkable in the recent past; but they are now becoming a reality. The men report continuing challenges in their lives as gay men in the nonmetropolitan space, but the emergence of new visibility, voice and cultural acceptance of LGBT people is helping change their lived experiences. The study demonstrates the impact of local activist LGBT citizens. Through their testimonies we can gain an insight into the many, varied and interwoven factors that have interplayed to create the conditions necessary for the men to: increasingly define themselves as gay to greater numbers of people in their localities; to embrace greater visibility and eschew strategies of silence; and aspire to a host of legal, political, cultural and social rights including same-sex marriage. Organic forms of visibility and local radicalism have emerged in the region and through an analysis of their testimonies we can see how the men continue to be transformed by an ever-changing landscape.


2021 ◽  
pp. 026975802110106
Author(s):  
Raoul Notté ◽  
E.R. Leukfeldt ◽  
Marijke Malsch

This article explores the impact of online crime victimisation. A literature review and 41 interviews – 19 with victims and 22 with experts – were carried out to gain insight into this. The interviews show that most impacts of online offences correspond to the impacts of traditional offline offences. There are also differences with offline crime victimisation. Several forms of impact seem to be specific to victims of online crime: the substantial scale and visibility of victimhood, victimisation that does not stop in time, the interwovenness of online and offline, and victim blaming. Victims suffer from double, triple or even quadruple hits; it is the accumulation of different types of impact, enforced by the limitlessness in time and space, which makes online crime victimisation so extremely invasive. Furthermore, the characteristics of online crime victimisation greatly complicate the fight against and prevention of online crime. Finally, the high prevalence of cybercrime victimisation combined with the severe impact of these crimes seems contradictory with public opinion – and associated moral judgments – on victims. Further research into the dominant public discourse on victimisation and how this affects the functioning of the police and victim support would be valuable.


BMC Medicine ◽  
2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Bimandra A. Djaafara ◽  
Charles Whittaker ◽  
Oliver J. Watson ◽  
Robert Verity ◽  
Nicholas F. Brazeau ◽  
...  

Abstract Background As in many countries, quantifying COVID-19 spread in Indonesia remains challenging due to testing limitations. In Java, non-pharmaceutical interventions (NPIs) were implemented throughout 2020. However, as a vaccination campaign launches, cases and deaths are rising across the island. Methods We used modelling to explore the extent to which data on burials in Jakarta using strict COVID-19 protocols (C19P) provide additional insight into the transmissibility of the disease, epidemic trajectory, and the impact of NPIs. We assess how implementation of NPIs in early 2021 will shape the epidemic during the period of likely vaccine rollout. Results C19P burial data in Jakarta suggest a death toll approximately 3.3 times higher than reported. Transmission estimates using these data suggest earlier, larger, and more sustained impact of NPIs. Measures to reduce sub-national spread, particularly during Ramadan, substantially mitigated spread to more vulnerable rural areas. Given current trajectory, daily cases and deaths are likely to increase in most regions as the vaccine is rolled out. Transmission may peak in early 2021 in Jakarta if current levels of control are maintained. However, relaxation of control measures is likely to lead to a subsequent resurgence in the absence of an effective vaccination campaign. Conclusions Syndromic measures of mortality provide a more complete picture of COVID-19 severity upon which to base decision-making. The high potential impact of the vaccine in Java is attributable to reductions in transmission to date and dependent on these being maintained. Increases in control in the relatively short-term will likely yield large, synergistic increases in vaccine impact.


Sign in / Sign up

Export Citation Format

Share Document