Variability in grain protein concentration of peas and lentils grown in Australia

1993 ◽  
Vol 44 (6) ◽  
pp. 1415 ◽  
Author(s):  
FL Stoddard ◽  
DR Marshall ◽  
SM Ali

Protein and yield data were obtained from South Australian and Interstate pea and lentil variety trials conducted between 1986 and 1989, covering 94 pea and 58 lentil genotypes. Crude protein concentration varied significantly across sites and averaged 25.0% in peas and 24.4% in lentils. Protein concentration was not significantly correlated with yield at most individual sites. Minimum protein concentration in peas was 1.6% below the mean of three check cultivars in line RA155, while the maximum was 2.3% above that mean in lines P255-2 and P262-1. In lentils the range was 1.2% above the check mean in ILL5562 and 1.0% below in ILL6017. A further lentil genotype, 'Chilean', was 6.0% above controls, but was inadequately replicated in these trials. Genotypic variation in pea and lentil protein concentration was lower than in many other species, but the lack of correlation between protein and yield suggests that independent selection of both characters during breeding is possible and should be successful without the rate of gain in one trait being reduced by that in the other.

1996 ◽  
Vol 36 (4) ◽  
pp. 443 ◽  
Author(s):  
MG Mason ◽  
RW Madin

Field trials at Beverley (19911, Salmon Gums (1991; 2 sites) and Merredin (1992; 2 sites), each with 5 rates of nitrogen (N) and 3 levels of weed control, were used to investigate the effect of weeds and N on wheat grain yield and protein concentration during 1991 and 1992. Weeds in the study were grasses (G) and broadleaf (BL). Weeds reduced both vegetative dry matter yield and grain yield of wheat at all sites except for dry matter at Merredin (BL). Nitrogen fertiliser increased wheat dry matter yield at all sites. Nitrogen increased wheat grain yield at Beverley and Merredin (BL), but decreased yield at both Salmon Gums sites in 1991. Nitrogen fertiliser increased grain protein concentration at all 5 sites-at all rates for 3 sites [Salmon Gums (G) and (BL) and Merredin (G)] and at rates of 69 kg N/ha or more at the other 2 sites [Beverley and Merredin (BL)]. However, the effect of weeds on grain protein varied across sites. At Merredin (G) protein concentration was higher where there was no weed control, possibly due to competition for soil moisture by the greater weed burden. At Salmon Gums (G), grain protein concentration was greater when weeds were controlled than in the presence of weeds, probably due to competition for N between crop and weeds. In the other 3 trials, there was no effect of weeds on grain protein. The effect of weeds on grain protein appears complex and depends on competition between crop and weeds for N and for water at the end of the season, and the interaction between the two.


1991 ◽  
Vol 71 (2) ◽  
pp. 177-187 ◽  
Author(s):  
C. A. Campbell ◽  
F. Selles ◽  
W. Nuttall ◽  
T. Wright ◽  
H. Ukrainetz

Saskatchewan producers growing primarily spring-seeded cereals may be interested in diversifying their cropping alternatives. Winter wheat (Triticum aestivum L.) could provide one possible option, but its management could cause conflict with the busy fall and early spring activities for spring-seeded crops. A study was conducted at five sites (Swift Current, 4 yr; Melfort, 4 yr; and Scott, Lashburn, and Loon Lake, 1 yr each) in four soil zones (Brown, Dark Brown, and Black Chernozems and Gray Luvisol). The effect of time of application of N (seeding to early spring), source of N (ammonium nitrate vs. urea), and method of application (broadcast, midrow band, and seed-placed) on yield and grain protein concentration were investigated. The results varied with site and year (weather). Time of N application only influenced yields at Swift Current (Brown soil) where application on cool unfrozen soil in mid-October was as good as application in early spring and better than at other times, and application onto frozen, snow-covered soil in December was least effective. At Swift Current and Melfort, grain protein concentration did not respond to time of application; however, at Scott, Lashburn and Loon Lake, protein was highest for spring-applied N, followed by mid-October, and lowest when N was applied on frozen snow-covered soil. The effect of N source rarely affected grain yield or protein and was dependent on site and method of placement. The dangers of seed-placing N, especially urea, on overwinter survival and yields were evident in 2 yr at Swift Current. There was rarely any difference in yield or grain protein concentration when N was banded or broadcast at seeding time. Taking into account convenience of operation, the most opportune time for Saskatchewan producers involved in growing both spring and winter wheat to apply N would be mid-October in the Brown soil zone. In the other soil zones, early spring would be best. Broadcasting the N was the most appropriate method of application at all sites. Urea would be chosen over ammonium nitrate because there was little advantage of one source over the other and urea is generally cheaper. Key words: Urea, ammonium nitrate, protein, grain yields, plant population


Crop Science ◽  
2003 ◽  
Vol 43 (5) ◽  
pp. 1671-1679 ◽  
Author(s):  
Paulo C. Canci ◽  
Lexingtons M. Nduulu ◽  
Ruth Dill‐Macky ◽  
Gary J. Muehlbauer ◽  
Donald C. Rasmusson ◽  
...  

2002 ◽  
Vol 82 (4) ◽  
pp. 489-498 ◽  
Author(s):  
B G McConkey ◽  
D. Curtin ◽  
C A Campbell ◽  
S A Brandt ◽  
F. Selles

We examined 1990-1996 crop and soil N data for no-tillage (NT), minimum tillage (MT) and conventional tillage (CT) systems from four long-term tillage studies in semiarid regions of Saskatchewan for evidence that the N status was affected by tillage system. On a silt loam and clay soil in the Brown soil zone, spring what (Triticum aestivum L.) grain yield and protein concentration were lower for NT compared with tilled (CT or MT) systems for a fallow-wheat (F-WM) rotation. Grain protein concentration for continuous wheat (Cont W) was also lower for NT than for MT. For a sandy loam soil in the Brown soil zone, durum (Triticum durum L.) grain protein concentration was similar for MT and NT for both Cont W and F-W, but NT had higher grain yield than MT (P < 0.05 for F-W only). For a loam soil in the Dark Brown soil zone, wheat grain yield for NT was increased by about 7% for fallow-oilseed-wheat (F-O-W) and wheat-oilseed-wheat (W-O-W) rotations. The higher grain yields for NT reduced grain protein concentration by dilution effect as indicated by similar grain N yield. However, at this site, about 23 kg ha-1 more fertilizer N was required for NT than for CT. Elimination of tillage increased total organic N in the upper 7.5 cm of soil and N in surface residues. Our results suggest that a contributing factor to decreased availability of soil N in medium- and fine-textured soils under NT was a slower rate of net N mineralization from organic matter. Soil nitrates to 2.4 m depth did not indicate that nitrate leaching was affected by tillage system. Current fertilizer N recommendations developed for tilled systems may be inadequate for optimum production of wheat with acceptable grain protein under NT is semiarid regions of Saskatchewan. Key words: Tillage intensity, N availability, soil N fractions, N mineralization, crop residue decomposition, grain protein


2002 ◽  
Vol 82 (3) ◽  
pp. 507-512 ◽  
Author(s):  
H. Wang ◽  
M. R. Fernandez ◽  
F. R. Clarke ◽  
R. M. DePauw ◽  
J. M. Clarke

Although leaf spotting diseases have been reported to have a negative effect on grain yield and seed characteristics of wheat (Triticum spp.), the magnitude of such effects on wheat grown on dryland in southern Saskatchewan is not known. A fungicide experiment was conducted at Swift Current (Brown soil) and Indian Head (Black soil) from 1997 to 1999 to determine the effect of leaf spotting diseases on yield and seed traits of wheat. Two fungicides, Folicur 3.6F and Bravo 500, were applied at different growth stages on three common wheat (Triticum aestivum L.) and three durum wheat (T. turgidum L. var durum) genotypes. Fungicide treatments generally did not affect yield, kernel weight, test weight or grain protein concentration, and these effects were relatively consistent among genotypes. Folicur applied at head emergence in 1997 and at flag leaf emergence and/or head emergence in 1998 increased yield at Indian Head (P < 0.05). Fungicides applied at and before flag leaf emergence tended to increase kernel weight. Grain protein concentration increased only in treatments of Bravo applications at Indian Head in 1998. These results suggested that under the dryland environment and management in southern Saskatchewan leaf spotting diseases generally have a small effect on yield, kernel weight, test weight and protein concentration. Key words: Wheat, leaf spotting diseases, fungicide, yield


2012 ◽  
Vol 4 (11) ◽  
Author(s):  
Ali Hafeez Malik ◽  
Allan Andersson ◽  
Ramune Kuktaite ◽  
Muhammad Yaqub Mujahid ◽  
Bismillah Khan ◽  
...  

1981 ◽  
Vol 21 (111) ◽  
pp. 424 ◽  
Author(s):  
WM Strong

Eighteen fertilizer trials, each with five levels of nitrogen (N) and three levels of phosphorus (PI, were conducted on black earth soils of the Darling Downs to establish optimal economic rates of N fertilizer in commercial, irrigated wheat crops. The optimal economic rate of N with a fertilizer: wheat price ratio (kg N: kg grain) of 5:l, the yield response of 100 kg/ha of applied N, the yield without fertilizer, and the yield with fertilizer not limiting were calculated from derived yield response relations at each site. A multi-variate regression procedure was used to determine which soil or crop management factors significantly influenced the rate of N needed to optimize wheat yield. Delay in planting after June 1 and the level of residual mineral N in the soil at planting had strong negative effects on the response to fertilizer and the optimal rate of fertilizer required. The results indicate that yields of irrigated wheat may be below the economic optimum because of sub-optimal applications of N. Other soil and management factors such as available soil P and number of irrigations also affected grain yield. At 1 3 sites low protein wheat (< 1 1.4�1~) was produced with all but the highest two rates of N fertilizer and at two sites even the highest rate produced low protein wheat. The effect of N fertilizer applied at planting on grain protein concentration was changed by the yield response to the fertilizer application. Grain protein concentration was curvilinearly related (R2 = 0.81) to relative grain yield (yield as a proportion of the maximum yield); grain protein was at its minimum at a relative yield of 0.5. Although heavy rates of N fertilizer at planting increased grain protein concentration on a few sites, usually these applications led to an inefficient use of N fertilizer; apparent incorporation of fertilizer N into grain decreased with increasing rate of fertilizer.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Idah Mkwezalamba ◽  
Chimuleke R. Y. Munthali ◽  
Edward Missanjo

Sclerocarya birrea(A. Rich.) Hochst. is a multipurpose fruit tree which is very useful in providing food security and meeting nutritional and economic needs. This study was conducted to assess eighteen provenances ofSclerocarya birreaplanted in Mangochi, Malawi. The trial was assessed for fruit traits at fifteen years of age. There were significant (P<0.001) variations among the provenances in number of fruits, fruit weight, pulp weight, seed weight, fruit length, and diameter. Magunde provenance from Mozambique had the highest mean number of fruits, 2196 ± 200. Mangochi and Moamba provenances from Malawi and Mozambique were the most outstanding in the other parameters measured attaining the mean fruit weight of 20.89 ± 0.25 g and 25.67 ± 0.67 g, pulp weight of 25.70 ± 0.08 g and 21.55 ± 0.83 g, seed weight of 4.81 ± 0.35 g and 4.12 ± 0.18 g, fruit length of 2.61 ± 0.14 cm and 2.33 ± 0.07 cm, and fruit diameter of 2.33 ± 0.15 cm and 1.97 ± 0.08 cm, respectively. There was no significant (P>0.05) correlation between number of fruits and the other fruit traits. However, there were significant (P<0.05) and strong positive relationships between fruit weight and pulp weight (r=0.987) and fruit length and diameter (r=0.775). This suggests that fruit weight can be used indirectly for selection of pulp. Further studies should investigate fruit taste quality of products from the fruits.


Crop Science ◽  
2002 ◽  
Vol 42 (3) ◽  
pp. 680-685 ◽  
Author(s):  
Deven See ◽  
Vladimir Kanazin ◽  
Ken Kephart ◽  
Tom Blake

Sign in / Sign up

Export Citation Format

Share Document