Structural Systematics of Metal Acetylide Complexes. II. X-Ray Studies of Some Nickel σ-Acetylide Complexes

1998 ◽  
Vol 51 (3) ◽  
pp. 219 ◽  
Author(s):  
Ian R. Whittall ◽  
Mark G. Humphrey ◽  
David C. R. Hockless

The structures of Ni(C≡CR)(PPh3)(η-C5H5) (R = Ph (1), C6H4-4-NO2 (2), 4-C6H4C6H4-4′-NO2 (3), (E)-4-C6H4CH=CHC6H4-4′-NO2 (4), 4-C6H4C≡CC6H4-4′-NO2 (5), 4-C6H4N=CHC6H4-4′-NO2 (6)) have been determined by single-crystal X-ray diffraction studies, refining by full-matrix least-squares analysis. For (1), crystals are triclinic, space group P-1, with a 10·094(2), b13·429(3), c 18·835(5) Å,α 103·24(2), β 91·50(2), γ 90·10(2)°, Z 4, 5844 unique reflections (595 parameters), converging at R 0·033 and Rw 0·024. For (2), crystals are orthorhombic, space group Pna21, with a 16·799(2), b 8·681(2), c 17·485(2) Å, Z 4, 1774 unique reflections (325 parameters), converging at R 0·031 and Rw 0·029. For (3), crystals are monoclinic, space group P 21/c, with a 11·140(3), b 18·282(4), c 15·296(2) Å, β 105·18(2)°, Z 4, 3132 unique reflections (397 parameters), converging at R 0·039 and Rw 0·024. For (4), crystals are monoclinic, space group P 21/n, with a 12·929(7), b 16·953(8), c 15·601(7) Å, β 112·55(3), Z 4, 3023 unique reflections (397 parameters), converging at R 0·039 and Rw 0·025. For (5), crystals are monoclinic, space group P 21/n, with a 12·710(5), b 16·882(3), c 15·693(4) Å, β 111·37(3)°, Z 4, 3216 unique reflections (397 parameters), converging at R 0·035 and Rw 0·030. For (6), crystals are monoclinic, space group P 21/n, with a 12·594(1), b 16·936(2), c 15·611(1) Å, β 112·476(5)°, Z 4, 3564 unique reflections (397 parameters), converging at R 0·038 and Rw 0·041. For structurally characterized 18-electron (cyclopentadienyl)nickel(II) acetylide complexes, statistically insignificant decreases in the average Ni-C(1) distance and trans influence and an increase in the average C(1)-C(2) parameter are observed on introduction of an acceptor substituent at the alkynyl ligand.

Author(s):  
Sandeep Kumar ◽  
Ruchi Khajuria ◽  
Amanpreet Kaur Jassal ◽  
Geeta Hundal ◽  
Maninder S. Hundal ◽  
...  

Donor-stabilized addition complexes of nickel(II) with disubstituted diphenyldithiophosphates, [{(ArO)2PS2}2NiL2] {Ar = 2,4-(CH3)2C6H3[(1), (5)], 2,5-(CH3)2C6H3[(2), (6)], 3,4-(CH3)2C6H3[(3), (7)] and 3,5-(CH3)2C6H3[(4), (8)];L= C5H5N [(1)–(4)] and C7H9N [(5)–(8)]}, were successfully isolated and characterized by elemental analysis, magnetic moment, IR spectroscopy and single-crystal X-ray analysis. Compound (4) crystallizes in the monoclinic space groupP21/nwhereas compounds (7) and (8) crystallize in the triclinic space group P\bar 1. The single-crystal X-ray diffraction analysis of (4), (7) and (8) reveals a six-coordinated octahedral geometry for the NiS4N2chromophore. Two diphenyldithiophosphate ions act as bidentate ligands with their S atoms coordinated to the Ni centre. Each of them forms a four-membered chelate ring in the equatorial plane. The N atoms from two donor ligands are axially coordinated to the Ni atom.


1981 ◽  
Vol 34 (10) ◽  
pp. 2243 ◽  
Author(s):  
SR Hall ◽  
S Nimgirawath ◽  
CL Raston ◽  
A Sittatrakul ◽  
S Thadaniti ◽  
...  

The crystal structure of zerumbone, C15H22O, extracted from the rhizomes of Zingiber zerumbet Smith, has been determined by single-crystal X-ray diffraction at 295(1) K and refined by least squares to a residual of 0.051 for 925 'observed' reflections. Crystals are monoclinic, space group P21/c, a 9.036(3), b 9.712(5), c 15.643(6) �, β 97.19(3)�, Z = 4. Although the molecule has no chiral centre, the presence of the three trans double bonds confers considerable distortion and rigidity on the eleven-membered ring and renders the whole molecule chiral and potentially resolvable.


1978 ◽  
Vol 31 (9) ◽  
pp. 1927 ◽  
Author(s):  
DL Kepert ◽  
CL Raston ◽  
NK Roberts ◽  
AH White

The crystal structure of the title compound, [Tl(S2CNEt2)3], has been determined by single-crystal X-ray diffraction methods at 295 K and refined by full-matrix least squares to a residual of 0.050 for 2517 'observed' reflections. Crystals are monoclinic, with space group A2/a, a 14.789(7), b 10.428(4), c 18.207(9) Ǻ, β 118.11(4)°, Z 4, and are isostructural with those of the previously determined gallium and indium analogues, the molecule having 2 symmetry with <Tl-S> 2.666 Ǻ. As in the dimethyl/thallium analogue, the departure of the TlS6 core symmetry from 3 is large and is examined in terms of electron-pair repulsion theory.


1988 ◽  
Vol 41 (5) ◽  
pp. 641 ◽  
Author(s):  
GB Robertson ◽  
PA Tucker

The structure of mer-(Pme2Ph)3Cl-cis-H2IrIII (1) has been determined by single-crystal X-ray and neutron diffraction analyses. Crystals are monoclinic, space group P21, with a 11.476(4), b 14.069(5), c 8.286(3)Ǻ, β 92.45(1)° and Z 2. Full-matrix least-squares analyses converged 0.022 for 7773 X-ray data and R(F2) = 0.062 for 1538 neutron data. Ir -H [1.557(11)Ǻ trans to Cl, 1.603(10) Ǻ trans to P] and Ir -P distances [2.292(1)Ǻ trans to P, 2.328(1)Ǻ trans to H] both exhibit trans lengthening effects. Consistent with the increased hydride content the Ir -P distances in (1) are c. 0.04 Ǻ shorter than for the corresponding bonds in its dichloro monohydrido analogues and c. 0.08 Ǻ shorter than those in the trichloride . In contrast Ir-Cl [2.505(1)Ǻ] is not significantly different to the corresponding distance (2.504 Ǻ av.) in mer -(PMe2Ph)3-cis-Cl2HIrIII.


1977 ◽  
Vol 30 (5) ◽  
pp. 1007 ◽  
Author(s):  
GR Scollary

A structural analysis of the platinum-silatrane complex, PtCl [Si(OCH2CH2)3N] [PMe2Ph]2, has been carried out by X-ray diffraction. Crystals are monoclinic, space group P21/c, a 6.630(4), b 17.465(6), c 22.297(6) Ǻ, β 97.4(2)�, Z 4. The structure has been refined by a full- matrix least-squares procedure to R 0.048 for 2165 reflections. Basic geometries are square (platinum), tetrahedral (silicon) and trigonal (nitrogen). Within the silatrane ligand, the Si-N non-bonding distance is 2.89(1) Ǻ.


1995 ◽  
Vol 48 (5) ◽  
pp. 1045 ◽  
Author(s):  
T Whyte ◽  
GA Williams

The crystal structure of tetraethylammonium bromopentacarbonyltungstate (0), [NEt4] [W(CO)5Br], has been determined by single-crystal X-ray diffraction methods at 22�1°C. Crystals are tetragonal, space group P4/n, with a 9.206(2), c 10.484(2) Ǻ, and Z 2. Full-matrix least-squares refinement gave a final R value of 0.034 for 820 independent reflections. The [W(CO)5Br]- anion possesses exact C4v symmetry, with bond lengths W-Br 2.736(1), W-COtrans 1.93(1) and W-COcis 2.034(6) Ǻ.


1978 ◽  
Vol 31 (2) ◽  
pp. 411 ◽  
Author(s):  
GR Scollary

A structural analysis of [(η-C5H5)2YMe2AlMe2] has been carried out by X- ray diffraction. Crystals are orthorhombic, space group Pna21, a 17.969(6), b 7.988(4), c 10.870(4) Ǻ, Z 4. The structure has been refined by a full-matrix least-squares procedure to R 0.052 for 663 observed reflections (Mo Kα automatic diffractometry). The structure contains a dimethyl bridge, the average bridging bond distances being 2.58(3) Ǻ for Y-C and 2.10(2) Ǻ for Al-C, and the Y-Al separation is 3.056(6) Ǻ.


1983 ◽  
Vol 36 (10) ◽  
pp. 2031 ◽  
Author(s):  
PC Healy ◽  
JM Patrick ◽  
BW Skelton ◽  
AH White

The crystal structures of three iron complexes [FeCI3(phen)(MeOH)].MeOH (I), [FeCl3(phen)(H2O)] (2) and [phenH]+ [FeCl4(phen)]- (3) have been determined by single-crystal X-ray diffraction methods at 295(1) K, and refined by least squares to residuals of 0.044 (1600 'observed' reflections), 0.040 (806) and 0.050 (2496), respectively. Crystals of (1) are monoclinic, P21/c, a 8.005(9), b 14.805(11), c 14.830(12) A, P 101.03(7)°, Z 4; for (2), triclinic, space group P1 , a 10.591(8), b 10.227(7), c 6.613(3) Ǻ, α 108.21(5), β 100.69(5), γ 91.98(6)°2, 2 ; for (3), triclinic, P1, a 18.560(8), b 10.302(5), c 6.981(3) Ǻ, α 106.79(4), β 94.50(4), γ 103.15(4)°, Z 2. In all structures, the iron atoms are six-coordinate, with the disposition of the three chlorine atoms being fac in (1) and (2).


1979 ◽  
Vol 32 (2) ◽  
pp. 297
Author(s):  
BW Skelton ◽  
AH White

The crystal structure of the title compound, NaAg(NO2)2, has been determined by single-crystal X-ray diffraction at 295(1) K and refined by full-matrix least squares to a residual of 0.043 for 449 'observed' reflections. Crystals are orthorhombic, space group Fd2d, a 7.913(2), b 10.721(2), c 10.857(3) �, Z 8. The structure is closely related to that of sodium and silver nitrites; the silver environment is dominated by the 'linear' coordination of a nitro group (Ag-N 2.25(2) �) and a 'chelating' pair of oxygen atoms from another NO2- species (Ag-O 2.422(8)�), the O2N-Ag-O2N group containing a crystallographic 2 axis.


1975 ◽  
Vol 28 (1) ◽  
pp. 15 ◽  
Author(s):  
JC Dewan ◽  
K Henrick ◽  
AH White ◽  
SB Wild

The crystal structures of the title compounds have been established by X-ray diffraction at 295 K, being refined by full-matrix least-squares to residuals of 0.054 (0.051) respectively 2715 (469) reflections with I > σ(I)]. Crystals are monoclinic, space group C2/c, the compounds being isomorphous. Oxychloride: a = 14.534(4), b = 8.337(2), c = 7.653(1)Ǻ, β = 106.48(1)�. Oxybromide: a = 14.884(4), b = 8.360(2), c = 7.726(1)Ǻ, β = 105.30(1)�, Z = 4. With the exception-of the arsenic- halogen distance, the geometries of the two molecules are identical within the limits of error: for the oxychloride As-O-As, 121.8(3); Cl- As-O,98.03(6); Cl-As-C, 97.2(2); O-As-C, 92. 9(2)� ; As-O, 1.787(3); As-C, 1.941(5) Ǻ. As-Cl is 2.222(2) and As-Br 2.381(2) Ǻ.


Sign in / Sign up

Export Citation Format

Share Document