Long-term effects of NPK fertiliser and manure on soil fertility and a sorghum - wheat farming system

2007 ◽  
Vol 47 (6) ◽  
pp. 700 ◽  
Author(s):  
M. C. Manna ◽  
A. Swarup ◽  
R. H. Wanjari ◽  
H. N. Ravankar

Yield decline or stagnation under long-term cultivation and its relationship with soil organic matter fractions are rarely considered. To understand this phenomenon, soil organic matter fractions and soil aggregate size distribution were studied in a long-term experiment at Akola, in a Vertisol in a semiarid tropical environment. For 14 years, the following fertiliser treatments were compared with undisturbed fallow plots: unfertilised (control), 100% recommended rates of N, NP, NPK (N : P : K ratios of 100 : 21.8 : 18.2 and 120 : 26.2 : 50 kg/ha for sorghum and wheat, respectively) and 100% NPK plus farmyard manure (FYM) and continuous cropping with a sorghum (Sorghum bicolor L. Moench) and wheat (Triticum aestivum L.) system during 1988–2001. The significant negative yield trend was observed in unbalanced use of inorganic N application for both crops. However, yields were maintained when NPK and NPK + FYM were applied. Results showed that soil organic C and total N in the unfertilised plot decreased by 21.7 and 18.2%, compared to the initial value, at a depth of 0–15 cm. Depletion of large macroaggregates (>2 mm) accounted for 22–81% of the total mass of aggregates in N, NP and unfertilised control plots compared to fallow plots. Irrespective of treatments, small macroaggregates (0.25–2 mm) dominated aggregate size distribution (56–71%), followed by microaggregates (0.053–0.25 mm, 18–37%). Active fractions, such as microbial biomass C, microbial biomass N, hot water soluble C and N, and acid hydrolysable carbohydrates were greater in NPK and NPK + FYM treatments than in the control. Carbon and N mineralisation were greater in small macroaggregates than microaggregates. Particulate organic matter C (POMC) and N (POMN) were significantly correlated (P < 0.01) with water-stable aggregate C and N (0.25–2 mm size classes), respectively. It was further observed that POMC and POMN were significantly greater in NPK and NPK + FYM plots than N and NP treated plots. Microbial biomass C was positively correlated with acid-hydrolysable carbohydrates (r = 0.79, P < 0.05). Continuous cropping and fertiliser use also influenced humic acid C and fulvic acid C fractions of the soil organic matter. Acid-hydrolysable N proportion in humic acid was greater than fulvic acid and it was greatest in NPK + FYM treatments. Continuous application of 100% NPK + FYM could restore soil organic carbon (SOC) to a new equilibrium level much earlier (t = 1/k, 2.4 years) than N (t = 1/k, 25.7 years), NP (t = 1/k, 8.1 years) and NPK (t = 1/k, 5.02 years). In conclusion, integrated use of NPK with FYM would be vital to obtain sustainable yields without deteriorating soil quality.

1969 ◽  
Vol 100 (2) ◽  
pp. 123-140
Author(s):  
Ian C. Pagán-Roig ◽  
Joaquín A. Chong ◽  
José A. Dumas ◽  
Consuelo Estévez de Jensen

The objective of this work was to measure the effects of repeated short-term organic amendments that we termed soil treatment management cycles (STMC) on physical and biological properties of a San Antón series soil. Each STMC lasted 60 days and consisted of incorporating 5% organic matter from coffee pulp compost; the planting, growth and incorporation of an intercrop of four green manure species; and the application of mycorrhizae and compost tea. The treatments were labeled: CL0, CL1, CL2 and CL3; where CL0 was the control, CL1 received one STMC, CL2 and CL3 received two and three STMC, respectively. The STMC intended to mimic the overall effect of a sustainable agricultural system, not to measure the individual effects of the practices. All treatments (CL1, CL2, CL3) showed an increase in soil organic matter (p≤0.05). When compared to the CL0 control, saturated hydraulic conductivity increased and bulk density decreased in all soils. Soil macroporosity was significantly increased by CL2 and CL3. Soil aggregate stability increased in CL1, CL2 and CL3 plots. Microbial biomass C increased in treatment CL3, and microbial biomass N increased in CL2 and CL3. The production of stable aggregates was correlated to humic acid content and positively influenced all other physical parameters assessed in this study. The STMC had a positive impact on soil properties by increasing the soil organic matter as well as the humic acid fraction. Soil macroporosity, defined as porosity with radius > 38 µm, was significantly increased by treatments CL2 and CL3. All of the organic matter fractions, including total organic matter, humic acid content, microbial biomass C and microbial biomass N were significantly increased by one or more STMC.


1991 ◽  
Vol 71 (3) ◽  
pp. 363-376 ◽  
Author(s):  
C. A. Campbell ◽  
V. O. Biederbeck ◽  
R. P. Zentner ◽  
G. P. Lafond

The effects of crop rotations and various cultural practices on soil organic matter quantity and quality in a Rego, Black Chernozem with a thin A horizon were determined in a long-term study at Indian Head, Saskatchewan. Variables examined included: fertilization, cropping frequency, green manuring, and inclusion of grass-legume hay crop in predominantly spring wheat (Triticum aestivum L.) production systems. Generally, fertilizer increased soil organic C and microbial biomass in continuous wheat cropping but not in fallow-wheat or fallow-wheat-wheat rotations. Soil organic C, C mineralization (respiration) and microbial biomass C and N increased (especially in the 7.5- to 15-cm depth) with increasing frequency of cropping and with the inclusion of legumes as green manure or hay crop in the rotation. The influence of treatments on soil microbial biomass C (BC) was less pronounced than on microbial biomass N. Carbon mineralization was a good index for delineating treatment effects. Analysis of the microbial biomass C/N ratio indicated that the microbial suite may have been modified by the treatments that increased soil organic matter significantly. The treatments had no effect on specific respiratory activity (CO2-C/BC). However, it appeared that the microbial activity, in terms of respiration, was greater for systems with smaller microbial biomass. Changes in amount and quality of the soil organic matter were associated with estimated amount and C and N content of plant residues returned to the soil. Key words: Specific respiratory activity, crop residues, soil quality, crop rotations


Agronomy ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1386
Author(s):  
Michael Stotter ◽  
Florian Wichern ◽  
Ralf Pude ◽  
Martin Hamer

Cultivation of Miscanthus x giganteus L. (Mis) with annual harvest of biomass could provide an additional C source for farmers. To test the potential of Mis-C for immobilizing inorganic N from slurry or manure and as a C source for soil organic matter build-up in comparison to wheat (Triticum aestivum L.) straw (WS), a greenhouse experiment was performed. Pot experiments with ryegrass (Lolium perenne L.) were set up to investigate the N dynamics of two organic fertilisers based on Mis at Campus Klein-Altendorf, Germany. The two fertilisers, a mixture of cattle slurry and Mis as well as cattle manure from Mis-bedding material resulted in a slightly higher N immobilisation. Especially at the 1st and 2nd harvest, they were partly significantly different compared with the WS treatments. The fertilisers based on Mis resulted in a slightly higher microbial biomass C and microbial biomass N and thus can be identified as an additional C source to prevent nitrogen losses and for the build-up of soil organic matter (SOM) in the long-term.


2019 ◽  
Vol 99 (2) ◽  
pp. 195-207 ◽  
Author(s):  
Yu Tan ◽  
Wanqin Yang ◽  
Xiangyin Ni ◽  
Bo Tan ◽  
Kai Yue ◽  
...  

The formation of soil organic matter via humification of plant litter is important for long-term carbon sequestration in forests; however, whether soil fauna affects litter humification is unclear. In this study, we quantified the effects of soil fauna on the optical properties (i.e., ΔlogK and E4/E6) of the alkaline-extracted humic acid-like solutions of four foliar litters by removing soil fauna via litterbags with different mesh sizes in two subtropical evergreen broad-leaved forests. Litterbags were collected at the leaf falling, budding, expanding, maturation, and senescence stages from November 2013 to October 2015 to assess whether the effects of soil fauna on litter humification vary in different plant phenology periods. The results showed that soil fauna significantly reduced the ΔlogK and E4/E6 values in the leaf expanding stage of oak litter and in the leaf falling stage of camphor and fir litters. The richness index of soil fauna explained 21%, 55%, 19%, and 45% of the variations in the E4/E6 values for oak, fir, camphor, and pine litters, respectively. The effects of litter water content on these optical properties were greater than that of temperature. These results indicated that soil fauna plays a key role in litter humification in the leaf expanding and falling stages and are potentially involved in soil carbon sequestration in these subtropical forests.


Sign in / Sign up

Export Citation Format

Share Document