Stress-strain properties of individual Merino wool fibres are minor contributors to variations in staple strength induced by genetic selection and nutritional manipulation

2009 ◽  
Vol 49 (8) ◽  
pp. 668 ◽  
Author(s):  
A. N. Thompson ◽  
P. I. Hynd

This paper investigates the contribution of single fibre stress-strain properties to variations in staple strength induced by both selective breeding for staple strength and nutritional manipulation. Merino weaners (n = 40), selected from ‘sound’ and ‘tender’ lines of staple strength selection flocks, were allocated to feeding regimes designed to induce liveweight changes simulating typical Mediterranean seasonal changes. Average staple strength differed by 5 N/ktex between ‘sound’ and ‘tender’ selection flocks and 18 N/ktex between extreme nutritional treatments. The force-extension properties of individual wool fibres (n = 100 per sheep) were measured using a single fibre strength meter. After normalising for differences in fibre cross-sectional area at the point of break, the key parameters used to describe the stress-strain curve for each fibre were: Young’s modulus (GPa), yield stress (MPa), stress at 15% strain (MPa), stress at break (MPa), strain at break (%) and work to break (MPa). The average stress-strain properties of single fibres differed widely between individual sheep. Stress at break ranged from 163 to 235 MPa (44% range), strain at break ranged from 21 to 44% (103% range) and work to break from 43 to 71 MPa (65% range). There were no significant differences in any of the single fibre properties between the staple strength selection flocks, nor was there any significant interaction (P > 0.05) between staple strength selection flock and nutritional regimes. Nutritional regime had a significant effect on stress at break, strain at break and work to break, but none of the single fibre stress-strain properties removed any appreciable variance in staple strength over and above that accounted for by differences in along- and between-fibre diameter variation. There appears to be little scope for improvement of single fibre stress-strain properties as a means of increasing staple strength in normal production environments. Selection directly for staple strength or indirectly using the fibre diameter variability traits is an effective method to improve staple strength.

2015 ◽  
Vol 55 (10) ◽  
pp. 1264 ◽  
Author(s):  
P. I. Hynd ◽  
N. M. Edwards ◽  
S. Weaver ◽  
K. Chenoweth ◽  
R. Stobart ◽  
...  

Conventional shearing of sheep is labour-intensive, expensive and presents significant occupational health and safety risks. The only alternative at present is based on injection of epidermal growth factor, which severs the fibre at the follicle level. This technology cannot be used in pregnant animals and requires application of a net to retain the severed fleece. An alternative is to create a weakened zone within the wool staple, which would be sufficiently strong to retain the fleece on the sheep while a protective covering regrows, but sufficiently weak as to allow painless and automated removal of the fleece. We demonstrate that this approach is possible using mixtures of amino acids lacking lysine and methionine. Initially we demonstrate the relationships between staple strength, a subjective ‘harvestability’ score and a subjective ‘pain’ score, using fleeces from animals treated with varying levels of cortisol to create a wide range of strengths of wool attachment. We assigned a score to the ease with which we could manually break the staples, and also to the animal’s response to breaking the staples still attached to the skin. The relationships between these variables indicated that a staple was considered harvestable and could be removed with minimal skin flinch response at a staple strength of ~10–13 N/kTex. Staples within this range were then produced by intravenous infusion of mixtures of amino acids lacking in lysine and methionine for a 5-day period. The weak point was uniformly created across the entire fleece and when a prototype roller-pin device was applied to the weakened wool, it uniformly broke the fleece of the three sheep tested. The mode of action of the amino acid treatment on wool growth was studied. There was no effect of unbalanced amino acids on the rate of follicle bulb cell division, the number of active wool follicles, or the length of the keratinisation zone in the wool follicle. Fibre diameter was reduced by ~4 microns by treatment, and intrinsic fibre strength (strength relative to cross-sectional area of the wool fibres), was reduced by ~50%. Results of these trials are encouraging but further work is required to develop a practical, on-farm method of altering systemic amino acid supply and to design an automated, high-throughput system of severing the weakened wool.


1992 ◽  
Vol 43 (6) ◽  
pp. 1337 ◽  
Author(s):  
PJ Reis

This review outlines the factors that may influence the strength of wool fibres and the associated changes in structure and protein composition that have been observed in weakened fibres. The strength of a wool staple is dependent on the intrinsic strength of the fibres that it contains and the total cross-sectional area of fibre being tested. The minimum fibre diameter and the rate of change of diameter along a staple are important determinants of strength. Different sheep kept under similar conditions show a large range of staple strengths. Estimates of heritability for staple strength are sufficiently high (0.17 to 0.49 in Merinos; 0.20 to 0.58 in Romneys) to prompt the establishment of selection programmes in both breeds. A variety of physiological and environmental factors influence the strength of wool fibres. Nutrient supply exerts a major influence via effects on fibre diameter. In addition, there are specific effects of some amino acids (methionine and lysine), trace elements (copper and zinc) and vitamins (folic acid). Seasonal effects are important in breeds which exhibit a large annual rhythm of wool growth, e.g. Romneys, but not in Merinos. Pregnancy and lactation influence fibre strength through competition for essential nutrients but hormonal factors may also be involved. Fibre strength may also be influenced by stress involving excessive secretion of glucocorticoids and by various parasites and diseases which can influence nutrient supply and cause stress. No clear association has been established between the strength of wool fibres and the proportions of the constituent proteins. The content of high-tyrosine proteins in the matrix of weak fibres is frequently, but not invariably, reduced. Likewise, fibre strength has been associated with the proportions of components of the high-sulfur proteins in some studies, but not in others. Thus in Romneys, but not Merinos, tender (weak) wool contained a higher proportion of orthocortex than sound wool, and hence contained less ultra-high-sulfur proteins. Weak fibres produced by specific nutritional treatments in adult sheep and lambs show a loss of cuticle scale pattern and malformed or degraded fibres.


1992 ◽  
Vol 43 (8) ◽  
pp. 1759 ◽  
Author(s):  
RG Gourdie ◽  
DFG Orwin ◽  
S Ranford ◽  
DA Ross

Wool fibre tenacity and its relationship to staple strength was studied in a pen-feeding trial of 40 New Zealand Romney ewes. A method for estimating fibre tenacity is described based on normalizing fibre breaking load by cross-sectional area measured on fibre fracture-surfaces. The validity of this protocol was demonstrated by showing that (i) fibre diameter measured at the point of rupture was not significantly (P > 0.05) changed by breaking, and (ii) that the tenacity estimate was not significantly (P > 0.05) correlated with cross-sectional area variation along fibres, and (iii) showed lower fibre-to-fibre variation than other accepted measures of intrinsic material strength. The majority (83.5%) of the 1200 fibres broken in this study cleaved in smooth-planed fractures normal to the long axis of the fibre, the remaining fibres demonstrated axial-splitting following rupture. Tenacity did not differ significantly between the two break-types (P > 0.05). Tenacity demonstrated small negative correlations (P < 0.05) with fibre cross-sectional area and ellipticity. No change in tenacity (P > 0.05) occurred within fine, slow-growing 'wool-break' regions and tenacity did not vary significantly (P < 0.05) between body sites on sheep. Tenacity showed no significant variation (P > 0.05) with differential winter feeding, but significant variations (P < 0.01) of wool tenacity occurred between sheep. The sheepto-sheep differences in tenacity showed significant relationships with two indices of staple strength, work (P < 0.01) and peak-force (P < 0.01). Variability in fibre tenacity between sheep and its relationship to staple strength may provide some explanation of the origin of 'tender' and 'sound' wools.


2014 ◽  
Vol 19 (4) ◽  
pp. 687-698
Author(s):  
Md. A. Kowser ◽  
Md. Mahiuddin

Abstract In this paper a technique has been developed to determine constant parameters of copper as a power-law hardening material by tensile test approach. A work-hardening process is used to describe the increase of the stress level necessary to continue plastic deformation. A computer program is used to show the variation of the stress-strain relation for different values of stress hardening exponent, n and power-law hardening constant, α . Due to its close tolerances, excellent corrosion resistance and high material strength, in this analysis copper (Cu) has been selected as the material. As a power-law hardening material, Cu has been used to compute stress hardening exponent, n and power-law hardening constant, α from tensile test experiment without heat treatment and after heat treatment. A wealth of information about mechanical behavior of a material can be determined by conducting a simple tensile test in which a cylindrical specimen of a uniform cross-section is pulled until it ruptures or fractures into separate pieces. The original cross sectional area and gauge length are measured prior to conducting the test and the applied load and gauge deformation are continuously measured throughout the test. Based on the initial geometry of the sample, the engineering stress-strain behavior (stress-strain curve) can be easily generated from which numerous mechanical properties, such as the yield strength and elastic modulus, can be determined. A universal testing machine is utilized to apply the load in a continuously increasing (ramp) manner according to ASTM specifications. Finally, theoretical results are compared with these obtained from experiments where the nature of curves is found similar to each other. It is observed that there is a significant change of the value of n obtained with and without heat treatment it means the value of n should be determined for the heat treated condition of copper material for their applications in engineering fields.


2016 ◽  
Vol 5 (3) ◽  
pp. 29
Author(s):  
A. Shalwan ◽  
S. Oraby ◽  
A. Alaskari

<p class="1Body">In recent years, high interests has emerged to use natural fibres as alternative reinforcements synthetic due to its unique benefits regarding renewability, recyclability, degradability, lightweight, and low cost. Recent investigations revealed that the mechanical performance of fibre reinforced polymer composites (FRPCs) is predicated mainly on the interfacial adhesion of fibre with the matrices. In the current work, an empirical approach was exploited to develop mathematical models using linear regression routines available in SPSS IBM program. Such models are established to determine the functional interrelations between, each of the fibres diameters and the percentage of chemical treatment, as independent or response variables, and the interfacial bonding between the DPF and Epoxy resin. Both single fibre tensile testing (SFTT) and single fibre fragmentation testing (SFFT) are considered to study the interfacial adhesion of fibre with matrix and to reflect the real loading conditions. Such testing procedures are carried out for Date Palm Fibres (DPFs) and Date palm fibre reinforced Epoxy composites (DPFEs) with different fibre diameter (0.3-0.7 mm) under different NaOH concentrations (0-9 wt.%). Experimental testing results indicated that the optimum interfacial adhesion and strength of the fibre can be achieved with small fibre diameter when 6 wt. % NaOH concentrations is employed. The use of higher NaOH concentration generally leads to deterioration in the fibre strength. Developed models, on one hand, proved to have the capability to qualitatively and quantitatively grasp the true relationships and, on the other hand, to emphasize the high potential to utilize natural fibres as a replacement of synthetic fibres with affirmation taking into consideration the role of diameter size and chemical treatment of fibres to reach the optimum mechanical behaviour of NFRPCs.</p>


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2738
Author(s):  
Roland Pawliczek ◽  
Tadeusz Lagoda

The literature in the area of material fatigue indicates that the fatigue properties may change with the number of cycles. Researchers recommend taking this into account in fatigue life calculation algorithms. The results of simulation research presented in this paper relate to an algorithm for estimating the fatigue life of specimens subjected to block loading with a nonzero mean value. The problem of block loads using a novel calculation model is presented in this paper. The model takes into account the change in stress–strain curve parameters caused by mean strain. Simulation tests were performed for generated triangular waveforms of strains, where load blocks with changed mean strain values were applied. During the analysis, the degree of fatigue damage was compared. The results of calculations obtained for standard values of stress–strain parameters (for symmetric loads) and those determined, taking into account changes in the curve parameters, are compared and presented in this paper. It is shown that by neglecting the effect of the mean strain value on the K′ and n′ parameters and by considering only the parameters of the cyclic deformation curve for εm = 0 (symmetric loads), the ratio of the total degree of fatigue damage varies from 10% for εa = 0.2% to 3.5% for εa = 0.6%. The largest differences in the calculation for ratios of the partial degrees of fatigue damage were observed in relation to the reference case for the sequence of block n3, where εm = 0.4%. The simulation results show that higher mean strains change the properties of the material, and in such cases, it is necessary to take into account the influence of the mean value on the material response under block loads.


2020 ◽  
Vol 2020 (9) ◽  
Author(s):  
Matteo Baggioli ◽  
Víctor Cáncer Castillo ◽  
Oriol Pujolàs

Abstract We discuss the nonlinear elastic response in scale invariant solids. Following previous work, we split the analysis into two basic options: according to whether scale invariance (SI) is a manifest or a spontaneously broken symmetry. In the latter case, one can employ effective field theory methods, whereas in the former we use holographic methods. We focus on a simple class of holographic models that exhibit elastic behaviour, and obtain their nonlinear stress-strain curves as well as an estimate of the elasticity bounds — the maximum possible deformation in the elastic (reversible) regime. The bounds differ substantially in the manifest or spontaneously broken SI cases, even when the same stress- strain curve is assumed in both cases. Additionally, the hyper-elastic subset of models (that allow for large deformations) is found to have stress-strain curves akin to natural rubber. The holographic instances in this category, which we dub black rubber, display richer stress- strain curves — with two different power-law regimes at different magnitudes of the strain.


SIMULATION ◽  
2021 ◽  
pp. 003754972110315
Author(s):  
B Girinath ◽  
N Siva Shanmugam

The present study deals with the extended version of our previous research work. In this article, for predicting the entire weld bead geometry and engineering stress–strain curve of the cold metal transfer (CMT) weldment, a MATLAB based application window (second version) is developed with certain modifications. In the first version, for predicting the entire weld bead geometry, apart from weld bead characteristics, x and y coordinates (24 from each) of the extracted points are considered. Finally, in the first version, 53 output values (five for weld bead characteristics and 48 for x and y coordinates) are predicted using both multiple regression analysis (MRA) and adaptive neuro fuzzy inference system (ANFIS) technique to get an idea related to the complete weld bead geometry without performing the actual welding process. The obtained weld bead shapes using both the techniques are compared with the experimentally obtained bead shapes. Based on the results obtained from the first version and the knowledge acquired from literature, the complete shape of weld bead obtained using ANFIS is in good agreement with the experimentally obtained weld bead shape. This motivated us to adopt a hybrid technique known as ANFIS (combined artificial neural network and fuzzy features) alone in this paper for predicting the weld bead shape and engineering stress–strain curve of the welded joint. In the present study, an attempt is made to evaluate the accuracy of the prediction when the number of trials is reduced to half and increasing the number of data points from the macrograph to twice. Complete weld bead geometry and the engineering stress–strain curves were predicted against the input welding parameters (welding current and welding speed), fed by the user in the MATLAB application window. Finally, the entire weld bead geometries were predicted by both the first and the second version are compared and validated with the experimentally obtained weld bead shapes. The similar procedure was followed for predicting the engineering stress–strain curve to compare with experimental outcomes.


Micromachines ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 529
Author(s):  
Chunzhi Du ◽  
Zhifan Li ◽  
Bingfei Liu

Nanoporous Shape Memory Alloys (SMA) are widely used in aerospace, military industry, medical and health and other fields. More and more attention has been paid to its mechanical properties. In particular, when the size of the pores is reduced to the nanometer level, the effect of the surface effect of the nanoporous material on the mechanical properties of the SMA will increase sharply, and the residual strain of the SMA material will change with the nanoporosity. In this work, the expression of Young’s modulus of nanopore SMA considering surface effects is first derived, which is a function of nanoporosity and nanopore size. Based on the obtained Young’s modulus, a constitutive model of nanoporous SMA considering residual strain is established. Then, the stress–strain curve of dense SMA based on the new constitutive model is drawn by numerical method. The results are in good agreement with the simulation results in the published literature. Finally, the stress-strain curves of SMA with different nanoporosities are drawn, and it is concluded that the Young’s modulus and strength limit decrease with the increase of nanoporosity.


Sign in / Sign up

Export Citation Format

Share Document