Monitoring advanced oxidation of Suwannee River fulvic acid

2010 ◽  
Vol 7 (3) ◽  
pp. 225 ◽  
Author(s):  
Janey V. Camp ◽  
Dennis B. George ◽  
Martha J. M. Wells ◽  
Pedro E. Arce

Environmental context.Potentially toxic disinfection by-products form when water containing humic and fulvic acids is chlorinated to destroy pathogenic microorganisms. A pulsed electrical discharge was examined for its ability to destroy an aquatic fulvic acid by oxidation. Spectroscopically, changes in the organic structures were observed, but carbon content and disinfection by-products were not reduced. Abstract.A pilot-scale pulsed electrical discharge (PED) system was used to treat Suwannee River fulvic acid (SRFA) as a representative precursor material for the formation of disinfection by-products (DBPs), specifically trihalomethane compounds. Ultraviolet-visible and fluorescence spectroscopy, dissolved organic carbon (DOC), and the trihalomethane formation potential (THMFP) were used as analytical parameters to monitor the effects of treatment on the substrate. The potential for SRFA degradation (5 mg L–1 DOC) was examined over 60 min at each of four operational configurations, varying pulse energy and frequency (0.15 J and 60 Hz, 0.15 J and 120 Hz, 0.4 J and 60 Hz, and 0.4 J and 120 Hz) in a factorial design. Statistically significant changes occurred for UV254, EX254EM460, and EX328EM460 under selected conditions; however, concomitant changes in DOC and THMFP were not observed. The composition of SRFA changed, but organic carbon was not mineralised to carbon dioxide. In addition to showing degradation by PED, the significance of the preliminary findings of this research was to demonstrate that spectroscopic monitoring of precursor degradation alone can be misleading, and that whereas ultraviolet-visible and fluorescence spectroscopy indicated degradation of precursor compounds, DOC and THMFP measurements were unchanged and did not support the occurrence of mineralisation in this system.

2003 ◽  
Vol 47 (9) ◽  
pp. 77-84 ◽  
Author(s):  
H. Yamamoto ◽  
H.M. Liljestrand

In this study, sorption of some estrogens and estrogenic compounds onto several organic colloids was examined using fluorescence quenching techniques. Selected organic colloids included humic substances of several sources, Aldrich humic acid (AHA), Suwannee River humic acid (SRHA), Suwannee River fulvic acid (SRFA), and Nordic fulvic acid (NFA). Polysaccharides, alginic acid (AA) and dextran (Dex), and tannic acid (TA) were also selected. 17β-estradiol (E2), 17α-ethynylestradiol (EES), and estriol (E3) were selected as estrogens. Nonylphenol (NP), octylphenol (OP), and dibutylphthalate (DBP) were selected as estrogenic compounds. For most of the selected compounds, the sorption coefficients were in the order of TA > humic acids (SRHA or AHA) > fulvic acids (NFA or SRFA) > AA. The smallest or no significant sorption onto dextran was found for selected estrogens and estrogenic compounds. Comparing those compounds, neither a significant trend nor linear correlation with Log Kow was found. The resulting sorption coefficients for humic substances and TA suggested approximately 15 to 50% of the estrogens and estrogenic compounds were bound in typical natural water of 5 mgTOC/L and significant effects on the removal of them by water treatment processes, toxicity, or bioavailability were suggested.


Langmuir ◽  
2004 ◽  
Vol 20 (14) ◽  
pp. 5655-5658 ◽  
Author(s):  
Tae Hyun Yoon ◽  
Stephen B. Johnson ◽  
Gordon E. Brown

2001 ◽  
Vol 35 (24) ◽  
pp. 4900-4904 ◽  
Author(s):  
William H. Otto ◽  
Sarah D. Burton ◽  
W. Robert Carper ◽  
Cynthia K. Larive

2007 ◽  
Vol 58 (2) ◽  
pp. 222 ◽  
Author(s):  
Suzanne McDonald ◽  
Jennifer M. Pringle ◽  
Paul D. Prenzler ◽  
Andrea G. Bishop ◽  
Kevin Robards

Dissolved organic carbon (DOC) is a vital resource for heterotrophic bacteria in aquatic ecosystems. The bioavailability of fulvic acid, which comprises the majority of aquatic DOC, is not well understood. The present study examined the bioavailability of bulk DOC and fulvic acid from two contrasting but inter-related water bodies: the Murrumbidgee River and adjacent Berry Jerry Lagoon. Bacteria utilised fulvic acids; however, bulk DOC was more bioavailable. Bacteria were able to utilise Murrumbidgee River DOC and fulvic acid more readily than Berry Jerry Lagoon DOC and fulvic acid, suggesting that the quality of carbon may be an important factor to consider when evaluating lateral exchange of nutrients between the main channel and floodplain. Chemical characteristics of fulvic acids appeared to explain some of the variation in fulvic acid bioavailability. The higher the molecular weight and complexity of the fulvic acid, the longer it took for bacteria to utilise the substrate (lag phase), but the larger the number of bacteria that grew on the substrate. The present study calls attention to the need for further multidisciplinary studies to address the quality of carbon in riverine-floodplain ecosystems.


Sign in / Sign up

Export Citation Format

Share Document