Hydrogen peroxide promotes programmed cell death and salicylic acid accumulation during the induced production of sesquiterpenes in cultured cell suspensions of Aquilaria sinensis

2015 ◽  
Vol 42 (4) ◽  
pp. 337 ◽  
Author(s):  
Juan Liu ◽  
Yanhong Xu ◽  
Zheng Zhang ◽  
Jianhe Wei

Aquilaria sinensis (Lour.) Gilg produces a highly valuable agarwood characterised by a diverse array of sesquiterpenes and chromone derivatives that can protect wounded trees against potential herbivores and pathogens. A defensive reaction on the part of the plant has been proposed as the key reason for agarwood formation, but the issue of whether programmed cell death (PCD), an important process of plant immune responding, is involved in agarwood formation, still needs to be clarified. In this study, treatment of cultured cell suspensions with hydrogen peroxide (H2O2) induced the production of sesquiterpenes due to endogenous accumulation of salicylic acid (SA) and elevations in the expression of sesquiterpene biosynthetic genes. Moreover, PCD was stimulated by H2O2 in cultured cell suspensions of A. sinensis due to the induction of caspase activity, upregulated expression of metacaspases and cytochrome c, and SA accumulation. Our findings demonstrate for the first time that H2O2 stimulates PCD, SA accumulation and sesquiterpene production in cultured cell suspensions of A. sinensis. Furthermore, results from this study provide a valuable insight into investigations of the potential interactions between sesquiterpene synthesis and PCD during agarwood formation.

Cells ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 962
Author(s):  
Maciej Jerzy Bernacki ◽  
Anna Rusaczonek ◽  
Weronika Czarnocka ◽  
Stanisław Karpiński

Salicylic acid (SA) is well known hormonal molecule involved in cell death regulation. In response to a broad range of environmental factors (e.g., high light, UV, pathogens attack), plants accumulate SA, which participates in cell death induction and spread in some foliar cells. LESION SIMULATING DISEASE 1 (LSD1) is one of the best-known cell death regulators in Arabidopsis thaliana. The lsd1 mutant, lacking functional LSD1 protein, accumulates SA and is conditionally susceptible to many biotic and abiotic stresses. In order to get more insight into the role of LSD1-dependent regulation of SA accumulation during cell death, we crossed the lsd1 with the sid2 mutant, caring mutation in ISOCHORISMATE SYNTHASE 1(ICS1) gene and having deregulated SA synthesis, and with plants expressing the bacterial nahG gene and thus decomposing SA to catechol. In response to UV A+B irradiation, the lsd1 mutant exhibited clear cell death phenotype, which was reversed in lsd1/sid2 and lsd1/NahG plants. The expression of PR-genes and the H2O2 content in UV-treated lsd1 were significantly higher when compared with the wild type. In contrast, lsd1/sid2 and lsd1/NahG plants demonstrated comparability with the wild-type level of PR-genes expression and H2O2. Our results demonstrate that SA accumulation is crucial for triggering cell death in lsd1, while the reduction of excessive SA accumulation may lead to a greater tolerance toward abiotic stress.


2005 ◽  
Vol 168 (1) ◽  
pp. 17-20 ◽  
Author(s):  
Tsanko S. Gechev ◽  
Jacques Hille

Hydrogen peroxide (H2O2) has established itself as a key player in stress and programmed cell death responses, but little is known about the signaling pathways leading from H2O2 to programmed cell death in plants. Recently, identification of key regulatory mutants and near-full genome coverage microarray analysis of H2O2-induced cell death have begun to unravel the complexity of the H2O2 network. This review also describes a novel link between H2O2 and sphingolipids, two signals that can interplay and regulate plant cell death.


2000 ◽  
Vol 123 (2) ◽  
pp. 487-496 ◽  
Author(s):  
Jennifer Riehl Koch ◽  
Robert A. Creelman ◽  
Steven M. Eshita ◽  
Mirjana Seskar ◽  
John E. Mullet ◽  
...  

2008 ◽  
Vol 9 (4) ◽  
pp. 435-445 ◽  
Author(s):  
OLIVIA J. DESMOND ◽  
JOHN M. MANNERS ◽  
AMBER E. STEPHENS ◽  
DONALD J. MACLEAN ◽  
PEER M. SCHENK ◽  
...  

2007 ◽  
Vol 6 (10) ◽  
pp. 1745-1757 ◽  
Author(s):  
Nancy Lee ◽  
Sreenivas Gannavaram ◽  
Angamuthu Selvapandiyan ◽  
Alain Debrabant

ABSTRACT In this report, we have characterized two metacaspases of Leishmania donovani, L. donovani metacaspase-1 (LdMC1) and LdMC2. These two proteins show 98% homology with each other, and both contain a characteristic C-terminal proline-rich domain. Both genes are transcribed in promastigotes and axenic amastigotes of L. donovani; however, LdMC1 shows increased mRNA levels in axenic amastigotes. An anti-LdMC antibody was obtained and showed reactivity with a single ∼42-kDa protein band in both promastigote and axenic amastigote parasite whole-cell lysates by Western blotting. Pulse-chase experiments suggest that LdMCs are not synthesized as proenzymes, and immunofluorescence studies show that LdMCs are associated with the acidocalcisome compartments of L. donovani. Enzymatic assays of immunoprecipitated LdMCs show that native LdMCs efficiently cleave trypsin substrates and are unable to cleave caspase-specific substrates. Consistently, LdMC activity is insensitive to caspase inhibitors and is efficiently inhibited by trypsin inhibitors, such as leupeptin, antipain, and N α-tosyl-l-lysine-chloromethyl ketone (TLCK). In addition, our results show that LdMC activity was induced in parasites treated with hydrogen peroxide, a known trigger of programmed cell death (PCD) in Leishmania and that parasites overexpressing metacaspases are more sensitive to hydrogen peroxide-induced PCD. These findings suggest that Leishmania metacaspases are not responsible for the caspase-like activities reported in this organism and suggest a possible role for LdMCs as effector molecules in Leishmania PCD.


Sign in / Sign up

Export Citation Format

Share Document