Bacteria in tropical floodplain soils are sensitive to changes in saltwater

2018 ◽  
Vol 69 (7) ◽  
pp. 1110 ◽  
Author(s):  
Tiffanie M. Nelson ◽  
Claire Streten ◽  
Karen S. Gibb ◽  
Anthony A. Chariton

Bacterial communities in floodplain and wetland soils cycle elements essential for flora and fauna. The coastal habitats of northern Australia are threatened with increasing saltwater intrusion (SWI) events that will destroy freshwater habitats. The effect of the impending SWI on bacterial communities is unknown. Here, we examined the bacterial communities of a tropical river floodplain located in World Heritage Kakadu National Park. Using 16S rRNA gene pyrosequencing, we measured the baseline bacterial communities from three morphologically distinct regions of the floodplain (lower, upper and backwater swamp), within three zones of the South Alligator River (upstream, cuspate and estuarine funnel or sinuous). Significant differences in the bacterial community were observed at each category of floodplain morphology and river zone. The greatest differences were due to pH and salinity. Large changes in bacterial compositions are predicted to occur with increases in salinity and pH. Saltwater intrusion is predicted to increase substantially in the next decades with sea-level rise, and is likely to cause large and significant changes to the bacterial community with unknown consequences for biogeochemical cycling. Kakadu National Park may benefit from incorporating bacteria into routine studies, because we have shown here that they are sensitive indicators of change, even across small ranges of abiotic variables.

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Young Kyung Kim ◽  
Keunje Yoo ◽  
Min Sung Kim ◽  
Il Han ◽  
Minjoo Lee ◽  
...  

Abstract Bacterial communities in wastewater treatment plants (WWTPs) affect plant functionality through their role in the removal of pollutants from wastewater. Bacterial communities vary extensively based on plant operating conditions and influent characteristics. The capacity of WWTPs can also affect the bacterial community via variations in the organic or nutrient composition of the influent. Despite the importance considering capacity, the characteristics that control bacterial community assembly are largely unknown. In this study, we discovered that bacterial communities in WWTPs in Korea and Vietnam, which differ remarkably in capacity, exhibit unique structures and interactions that are governed mainly by the capacity of WWTPs. Bacterial communities were analysed using 16S rRNA gene sequencing and exhibited clear differences between the two regions, with these differences being most pronounced in activated sludge. We found that capacity contributed the most to bacterial interactions and community structure, whereas other factors had less impact. Co-occurrence network analysis showed that microorganisms from high-capacity WWTPs are more interrelated than those from low-capacity WWTPs, which corresponds to the tighter clustering of bacterial communities in Korea. These results will contribute to the understanding of bacterial community assembly in activated sludge processing.


2020 ◽  
Vol 11 ◽  
Author(s):  
Pasquale Alibrandi ◽  
Sylvia Schnell ◽  
Silvia Perotto ◽  
Massimiliano Cardinale

The endophytic microbiota can establish mutualistic or commensalistic interactions within the host plant tissues. We investigated the bacterial endophytic microbiota in three species of Mediterranean orchids (Neottia ovata, Serapias vomeracea, and Spiranthes spiralis) by metabarcoding of the 16S rRNA gene. We examined whether the different orchid species and organs, both underground and aboveground, influenced the endophytic bacterial communities. A total of 1,930 operational taxonomic units (OTUs) were obtained, mainly Proteobacteria and Actinobacteria, whose distribution model indicated that the plant organ was the main determinant of the bacterial community structure. The co-occurrence network was not modular, suggesting a relative homogeneity of the microbiota between both plant species and organs. Moreover, the decrease in species richness and diversity in the aerial vegetative organs may indicate a filtering effect by the host plant. We identified four hub OTUs, three of them already reported as plant-associated taxa (Pseudoxanthomonas, Rhizobium, and Mitsuaria), whereas Thermus was an unusual member of the plant microbiota. Core microbiota analysis revealed a selective and systemic ascent of bacterial communities from the vegetative to the reproductive organs. The core microbiota was also maintained in the S. spiralis seeds, suggesting a potential vertical transfer of the microbiota. Surprisingly, some S. spiralis seed samples displayed a very rich endophytic microbiota, with a large number of OTUs shared with the roots, a situation that may lead to a putative restoring process of the root-associated microbiota in the progeny. Our results indicate that the bacterial community has adapted to colonize the orchid organs selectively and systemically, suggesting an active involvement in the orchid holobiont.


2019 ◽  
Vol 8 (1) ◽  
pp. 30 ◽  
Author(s):  
Susanne Jacksch ◽  
Dominik Kaiser ◽  
Severin Weis ◽  
Mirko Weide ◽  
Stefan Ratering ◽  
...  

Modern, mainly sustainability-driven trends, such as low-temperature washing or bleach-free liquid detergents, facilitate microbial survival of the laundry processes. Favourable growth conditions like humidity, warmth and sufficient nutrients also contribute to microbial colonization of washing machines. Such colonization might lead to negatively perceived staining, corrosion of washing machine parts and surfaces, as well as machine and laundry malodour. In this study, we characterized the bacterial community of 13 domestic washing machines at four different sampling sites (detergent drawer, door seal, sump and fibres collected from the washing solution) using 16S rRNA gene pyrosequencing and statistically analysed associations with environmental and user-dependent factors. Across 50 investigated samples, the bacterial community turned out to be significantly site-dependent with the highest alpha diversity found inside the detergent drawer, followed by sump, textile fibres isolated from the washing solution, and door seal. Surprisingly, out of all other investigated factors only the monthly number of wash cycles at temperatures ≥ 60 °C showed a significant influence on the community structure. A higher number of hot wash cycles per month increased microbial diversity, especially inside the detergent drawer. Potential reasons and the hygienic relevance of this finding need to be assessed in future studies.


2012 ◽  
Vol 78 (7) ◽  
pp. 2359-2366 ◽  
Author(s):  
Merritt G. Gillilland ◽  
John R. Erb-Downward ◽  
Christine M. Bassis ◽  
Michael C. Shen ◽  
Galen B. Toews ◽  
...  

ABSTRACTLittle is known about the dynamics of early ecological succession during experimental conventionalization of the gastrointestinal (GI) tract; thus, we measured changes in bacterial communities over time, at two different mucosal sites (cecum and jejunum), with germfree C57BL/6 mice as the recipients of cecal contents (input community) from a C57BL/6 donor mouse. Bacterial communities were monitored using pyrosequencing of 16S rRNA gene amplicon libraries from the cecum and jejunum and analyzed by a variety of ecological metrics. Bacterial communities, at day 1 postconventionalization, in the cecum and jejunum had lower diversity and were distinct from the input community (dominated by eitherEscherichiaorBacteroides). However, by days 7 and 21, the recipient communities had become significantly diverse and the cecal communities resembled those of the donor and donor littermates, confirming that transfer of cecal contents results in reassembly of the community in the cecum 7 to 21 days later. However, bacterial communities in the recipient jejunum displayed significant structural heterogeneity compared to each other or the donor inoculum or the donor littermates, suggesting that the bacterial community of the jejunum is more dynamic during the first 21 days of conventionalization. This report demonstrates that (i) mature input communities do not simply reassemble at mucosal sites during conventionalization (they first transform into a “pioneering” community and over time take on the appearance, in membership and structure, of the original input community) and (ii) the specific mucosal environment plays a role in shaping the community.


Author(s):  
Lara Parata ◽  
Shaun Nielsen ◽  
Xing Xing ◽  
Torsten Thomas ◽  
Suhelen Egan ◽  
...  

Abstract Herbivorous fishes play important ecological roles in coral reefs by consuming algae that can otherwise outcompete corals, but we know little about the gut microbiota that facilitates this process. This study focussed on the gut microbiota of an ecologically important coral reef fish, the convict surgeonfish Acanthurus triostegus. We sought to understand how the microbiome of this species varies along its gastrointestinal tract and how it varies between juvenile and adult fish. Further, we examined if the bacteria associated with the diet consumed by juveniles contributes to the gut microbiota. 16S rRNA gene amplicon sequencing showed that bacterial communities associated with the midgut and hindgut regions were distinct between adults and juveniles, however, no significant differences were seen for gut wall samples. The microbiota associated with the epilithic algal food source was similar to that of the juvenile midgut and gut wall but differed from the microbiome of the hindgut. A core bacterial community including members of taxa Epulopiscium and Brevinemataceae was observed across all gastrointestinal and diet samples, suggesting that these bacterial symbionts can be acquired by juvenile convict surgeonfish horizontally via their diet and then are retained into adulthood.


2011 ◽  
Vol 63 (3) ◽  
pp. 397-406 ◽  
Author(s):  
Jiro Nakayama ◽  
Takako Kobayashi ◽  
Shigemitsu Tanaka ◽  
Yuki Korenori ◽  
Atsushi Tateyama ◽  
...  

2021 ◽  
Vol 37 (6) ◽  
pp. 662-672
Author(s):  
Shin Ae Lee ◽  
Hyeon Su Kim ◽  
Mee Kyung Sang ◽  
Jaekyeong Song ◽  
Hang-Yeon Weon

Plant growth-promoting bacteria improve plant growth under abiotic stress conditions. However, their effects on microbial succession in the rhizosphere are poorly understood. In this study, the inoculants of Bacillus mesonae strain H20-5 were administered to tomato plants grown in soils with different salinity levels (EC of 2, 4, and 6 dS/m). The bacterial communities in the bulk and rhizosphere soils were examined 14 days after H20-5 treatment using Illumina MiSeq sequencing of the bacterial 16S rRNA gene. Although the abundance of H20-5 rapidly decreased in the bulk and rhizosphere soils, a shift in the bacterial community was observed following H20-5 treatment. The variation in bacterial communities due to H20-5 treatment was higher in the rhizosphere than in the bulk soils. Additionally, the bacterial species richness and diversity were greater in the H20-5 treated rhizosphere than in the control. The composition and structure of the bacterial communities varied with soil salinity levels, and those in the H20-5 treated rhizosphere soil were clustered. The members of Actinobacteria genera, including Kineosporia, Virgisporangium, Actinoplanes, Gaiella, Blastococcus, and Solirubrobacter, were enriched in the H20-5 treated rhizosphere soils. The microbial co-occurrence network of the bacterial community in the H20-5 treated rhizosphere soils had more modules and keystone taxa compared to the control. These findings revealed that the strain H20-5 induced systemic tolerance in tomato plants and influenced the diversity, composition, structure, and network of bacterial communities. The bacterial community in the H20-5 treated rhizosphere soils also appeared to be relatively stable to soil salinity changes.


2019 ◽  
Author(s):  
Meijia Li ◽  
Qiuxia Wang ◽  
Zhengbo Liu ◽  
Xiaoxi Pan ◽  
Yayu Zhang

Abstract Background This study analyzed the effect of silicon (Si) application on the occurrence of ginseng black spot caused by Alternaria panax . We explored the differences in soil physical and chemical factors and microbial community structure following Si application as well as the key factors that affected the occurrence of ginseng black spot in soil. Potted Panax ginseng plants were used to assess the effect of Si treatment on ginseng black spot. Soil physical and chemical properties were comprehensively analyzed. Bacterial communities were analyzed using Illumina HiSeq sequencing targeting the 16S rRNA gene. Results After inoculation with A. panax , the morbidity (and morbidity index) of ginseng with and without Si was 52% (46) and 83% (77), respectively. Soil physical and chemical analysis showed that under the ginseng black spot inoculation, bacterial communities were mainly affected by pH and available potassium, followed by ammonium nitrogen and available Si. NMDS and PLS-DA analyses and the heat maps of relative abundance revealed that Si application elevated the resistance of ginseng black spot as regulated by the abundance and diversity of bacterial flora in rhizosphere soils. Heatmap analysis at the genus level revealed that A. panax + Si inoculations significantly increased the soil community abundance of Sandaracinus , Polycyclovorans , Hirschia , Haliangium , Nitrospira , Saccharothrix , Aeromicrobium , Luteimonas , and Rubellimicrobium and led to a bacterial community structure with relative abundances that were significantly similar to that of untreated soil. Conclusions Short-term Si application also significantly regulated the structural impact on soil microorganisms caused by ginseng black spot. Our findings indicated that Si applications may possibly be used in the prevention and treatment of ginseng black spot.


Author(s):  
Aitana Ares ◽  
Joana Pereira ◽  
Eva Garcia ◽  
Joana Costa ◽  
Igor Tiago

The pandemic Pseudomonas syringae pv. actinidiae (Psa) has been compromising the production of the kiwifruit industry in major producing countries. Abiotic factors and plant gender are known to influence the disease outcome. To better understand their impact, we have determined the diversity of the leafs bacterial communities using the V5-V6 region of the 16S rRNA gene amplicon on the Illumina MiSeq sequencing platform. Healthy and diseased female and male kiwifruit plants were analyzed in two consecutive seasons: spring and autumn. This work describes whether the season, plant gender and the presence of Psa can affect the leaves bacterial community. Fifty bacterial operational taxonomic units (OTUs) were identified and assigned to five phyla distributed by 14 different families and 23 genera. The leaves of healthy female and male kiwi plants share most of the identified bacterial populations, that undergoes major seasonal changes. In both cases a substantial increase of the relative abundance of genus Methylobacterium is observed in autumn. The presence of Psa induced profound changes on leaves bacterial communities structure translated into a reduction in the relative abundance of previously dominant genera that had been found in healthy plants, namely Hymenobacter, Sphingomonas and Massilia. The impact of Psa was less pronounced in the bacterial community structure of male plants in both seasons. Some of the naturally occurring genera have the potential to act as an antagonist or as enhancers of the defense mechanisms paving the way for environmentally friendly and sustainable disease control.


2014 ◽  
Vol 60 (3) ◽  
pp. 98-104
Author(s):  
Katarína Ondreičková ◽  
Andrej Ficek ◽  
Daniel Mihálik ◽  
Marcela Gubišová ◽  
Martina Hudcovicová ◽  
...  

Abstract The terminal restriction fragment length polymorphism munities from different collecting places was evaluated was used to determine the bacterial diversity in rhizo- by principal component analysis. Results showed that sphere of maize (Zea mays L.) collected from four sites the most different bacterial community originated from of experimental field plot in two dates of the vegetation marginal part of the experimental field plot collected in season (July and September). The 16S rRNA gene was September was caused probably by combination of the amplified from metagenomic DNA using universal eubac- marginal effect and drought before sampling date in Sep- terial primers and PCR products were digested separately tember. Other rhizosphere samples showed from moderate with three restriction enzymes. Significant differences in to small differences in the structure of the bacterial com- the number of terminal restriction fragments among rhi- munity. Nevertheless, significant differences among all zosphere samples and between sampling dates were not collected bacterial communities were not observed. detected (P < 0.05). Variation within the bacterial communities from different collecting places was evaluated by principal component analysis. Results showed that the most different bacterial community originated from marginal part of the experimental field plot collected in September was caused probably by combination of the marginal effect and drought before sampling date in September. Other rhizosphere samples showed from moderate to small differences in the structure of the bacterial community. Nevertheless, significant differences among all collected bacterial communities were not observed.


Sign in / Sign up

Export Citation Format

Share Document