159 THE EFFECT OF DIFFERENT ZWITTERIONIC BUFFERS AND PBS ON IN VITRO DEVELOPMENT AND MORPHOLOGY OF BOVINE EMBRYOS

2006 ◽  
Vol 18 (2) ◽  
pp. 187
Author(s):  
J. De la Fuente ◽  
A. Gutiérrez-Adán ◽  
P. Beltrán Breña ◽  
S. S. Pérez-Garnelo ◽  
A. T. Palasz

It is assumed that, contrary to phosphate buffers, zwitterionic buffers are neutral. However, zwitterionic buffers containing hydroxymethyl or hydroxyethyl residues may interact with OH-groups in the media and produce formaldehyde (Shiraishi et al. 1993 Free Radic. Res. Commun. 19, 315-321). Also, it was shown that three zwitterionic buffers tested in this study interact with DNA (Stellwagen et al. 2000 Anal. Biochem. 287, 167-175). Our objective was to evaluate the effect of the following buffers: TES (T), MOPS (M), HEPES (H) (pKa values at 20�C: 7.2-7.5), and PBS on in vitro development and morphology of bovine embryos. Zwitterionic buffers and PBS were prepared at a concentration of 10 mM in TALP medium and the final pH was adjusted to 7.2. Bovine follicular fluid was aspirated from abattoir-derived ovaries and evenly divided into four tubes. Collected oocytes (five replicates) from each tube were processed separately through the entire IVM, IVF, and IVC procedures using washing medium buffered with: PBS (n = 490), Group 1; H (n = 438), Group 2; M (n = 440), Group 3; and T (n = 394), Group 4. All buffers contained 4 mg/mL BSA. Oocytes were matured in TCM-199 + 10% FCS and 10 ng/mL of epidermal growth factor and fertilized in Fert-TALP containing 25 mM bicarbonate, 22 mM sodium lactate, 1 mM sodium pyruvate, 6 mg/mL BSA-FAF, and 10 �g/mL heparin with 1 � 106 spermatozoa/mL. After 24 h, oocytes-sperm co-incubation presumptive zygotes were cultured in SOFaa medium with 8 mg/mL BSA at 39�C under paraffin oil and 5% CO2 in humidified air. Cumulus-oocyte complexes and zygotes were held in designated buffers ?16 min before oocyte maturation, ~7 min after IVM and before IVF, and ~18 min after IVF and before culture. The total time of oocyte/embryo exposure to each buffer was ?41 min. Embryo development was recorded on Days 4, 7, 8, and 9. A total of ten, Day 8 blastocysts were taken randomly from each treatment and fixed in 4% paraformaldehyde for total and apoptotic cells counts, and five blastocysts from each replicate and treatment were frozen for later mRNA analysis. Apoptosis were determined by TUNEL, using commercial In situ Cell Death Detection Kit (Roche Diagnostic, SL, Barcelono, Spain). Embryo development among groups was compared by chi-square analysis. The cleavage rates were not different among the groups: PBS, 70.8%; H, 76.5%; M, 77.5% and T, 73.6%. The number of embryos that developed to d8 cells at Day 4 was higher in M, 36.2%, and PBS, 37.6%, than in H, 30.6%, and T, 29.7%, but was not significantly different. However, more (P < 0.05) blastocysts developed at Days 7, 8, and 9 in H and M than in PBS and T groups (21.9% and 22.9% vs. 16.9% and 14.9%, respectively). No difference was found between groups in total cell number (98.8 � 7, PBS; 111.8 � 11.9, M; 106.8 � 12.9, H; and 104.3 � 9.7, T) and the number of apoptotic cells (9.2 � 1.0, P; 9.2 � 0.8, M; 12.9 � 1.8, H; and 9.7 � 0.9, T). Based on the results of this study, we conclude that within our protocol choice of buffer may affect embryo developmental rates but not morphology.

2008 ◽  
Vol 20 (1) ◽  
pp. 105
Author(s):  
E. S. Ribeiro ◽  
R. P. C. Gerger ◽  
L. U. Ohlweiler ◽  
I. Ortigari Jr ◽  
F. Forell ◽  
...  

Cloning by somatic cell nuclear transfer has been associated with developmental abnormalities, with the level of heteroplasmy imposed by cell fusion being one of many potential determining factors. As the cytoplast exerts a key role in nuclear reprogramming, embryo aggregation is an alternative to minimize such negative effects during cloning. The aim of this study was to determine the effect of fusion of hemi-cytoplasts or aggregation of hemi-embryos on in vitro development and cell number of clone and parthenote embryos. Bovine cumulus–oocyte complexes (COCs) from slaughterhouse ovaries, after 17 h of IVM, were used for the production of parthenotes by chemical activation, and clone embryos by handmade cloning (HMC) (Vajta et al. 2003 Biol. Reprod. 68, 571–578). Following cumulus and zona removal, oocytes were manually bisected, followed by segregation of nucleated and enucleated hemi-cytoplasts by fluorescence using Hoechst stain. One or two enucleated hemi-cytoplasts were paired with an adult skin somatic cell from primary cultures (>90% confluence) and fused using a 25V AC pre-pulse, followed by a single 1.2 kV cm–1 DC pulse for 10 μs. Reconstructed clone structures and groups of zona-intact oocytes and nucleated hemi-cytoplasts were chemically activated in ionomycin and 6-DMAP. Clone and parthenote structures were in vitro-cultured in the WOW system (Vajta et al. 2000 Mol. Reprod. Dev. 55, 256–264) for 7 days, as follows: (G1) clone embryos reconstructed by aggregation of two hemi-embryos per WOW; or (G2) one embryo (two hemi-cytoplasts + cell) perWOW; and parthenote embryos composed of (G3) zona-intact oocytes cultured in wells; or aggregation of one (G4), two (G5), three (G6), or four (G7) nucleated hemi-cytoplasts per WOW. Fusion, cleavage (Day 2), and blastocyst (Day 7) rates, evaluated on a per WOW basis, were compared by the chi-square test (8 replications). Total cell number estimated by fluorescence (Hoechst stain) in blastocysts was analyzed by the Student t-test. Fusion rates of one hemi-cytoplast + cell (G1; 275/592, 46.5%) were lower than for two hemi-cytoplasts + cell (G2; 264/337, 78.3%). Cleavage rates were lower in G1 and G4 and higher in G6 and G7 than G2 and G3. A significant linear increase in blastocyst rates was observed in G5, G6, and G7. Total cell numbers were lower in parthenotes than in clones, except in G6 and G7. The lower fusion and cleavage rates after the aggregation of two clone hemi-embryos (G1) caused nearly a 50% reduction in the overall cloning efficiency. In addition, the aggregation of parthenogenetic hemi-embryos increased cleavage and blastocyst rates and cell number. However, aggregation of hemi structures did not improve blastocyst yield or cell number on a hemi-cytoplast basis. Table 1. In vitro development of parthenote or clone bovine embryos This work was supported by funding from CAPES/Brazil.


2013 ◽  
Vol 25 (1) ◽  
pp. 174
Author(s):  
R. Olivera ◽  
C. Alvarez ◽  
I. Stumpo ◽  
G. Vichera

The time allowed for nuclear reprogramming is considered an essential factor for the efficiency of cloning and has not been evaluated in equine aggregated cloned embryos. The aim of our work was to assess the effect of different timing of activation stimulus after fusion of adult equine fibroblast cells to enucleated equine oocytes on embryo development and embryo quality. We processed a total of 1874 equine ovaries, recovering 3948 oocytes, of which 1914 (48.5%) had extruded the first polar body after 24 h of maturation. Oocyte collection, maturation, and the NT procedure were performed as described by Lagutina et al. (2007 Theriogenology 67, 90–98). Reconstructed oocytes (RO) were activated at 3 different times after cell fusion: (1) 1 h, (2) 1.5 h, and (3) 2 h. Activation was performed using 8.7 µM ionomycin for 4 min, followed by a 4-h culture in a combination of 1 mM DMAP and 5 mg mL–1 of cycloheximide. The RO were cultured in the well of the well system, aggregating 3 RO per well. The RO were cultured in DMEM-F12 with 5% fetal bovine serum (FBS) and antibiotics. Cleavage (48 h after activation), blastocyst, and expanded blastocyst rates (8–9 days) were assessed. In vitro development was compared using the chi-square test (P < 0.05). A total of 1608 RO were cultured. Cleavage was significantly lower in group 3 with respect to the other 2 groups [(1): 396/450, 88%; (2): 540/639, 84.5%; (3): 365/519, 70.3%]. There were no significant differences in blastocyst rates within the 3 groups considering the number of total RO [(1): 19/450, 4.2%; (2): 23/639, 3.6%; (3): 15/519, 2.9%] or aggregated RO per well [(1): 12.7%; (2): 10.8%; (3): 8.7%]. However, the rate of blastocyst expansion was higher (P < 0.05) in group 2 than in group 3 [(1): 17/19, 89.5%; (2): 23/23, 100%; (3): 11/15, 73.3%]. In conclusion, the timing of nuclear reprogramming did not affect blastocyst rates but affected cleavage rates and blastocyst quality. This indicates that 1 h before activation stimulus is enough for embryo development of equine aggregated cloned embryos.


2015 ◽  
Vol 27 (1) ◽  
pp. 214
Author(s):  
C. Douet ◽  
O. Parodi ◽  
F. Reigner ◽  
P. Barrière ◽  
G. Goudet

Most wild equids are currently endangered or threatened, as mentioned in the International Union for the Conservation of Nature Red List, and several domestic horse breeds are at risk of extinction. Genome resource banking requires cryoconservation of semen, oocytes, and/or embryos. Embryo production in equids is limited in vivo because routine induction of multiple ovulation is still ineffective. Embryo production in vitro allows the production of several embryos per cycle that could easily be frozen because of their small size. Intracytoplasmic sperm injection has been widely adopted to generate horse embryos in vitro; however, intracytoplasmic sperm injection is time-consuming and requires expensive equipment and expertise in micromanipulation. Several attempts to establish an efficient IVF technique in the equine were performed, but reported IVF rates remain quite low and no repeatable equine IVF technique was available. Our objective was to develop an efficient and repeatable IVF technique in the equine. Immature cumulus-oocyte complexes (COC) were collected either from slaughtered mares in a local slaughterhouse or from our experimental mares by ovum pick up (OPU). The COC were cultured for 26 h in an in vitro maturation (IVM) medium or in preovulatory follicular fluid (FF) collected by OPU, pre-incubated for 30 min in oviducal fluid collected from slaughtered females, co-incubated for 18 h with fresh spermatozoa treated with procain, and cultured in SOF for 30 h. They were fixed and analysed either after 18 h IVF (experiment 1) or after 30 h in vitro development (experiment 2). In experiment 1, COC were collected from slaughtered mares and analysed after 18 h IVF. Zygotes with 2 pronuclei were observed. The IVF rate was similar for oocytes matured in IVM medium (22/33, 67%) or FF (24/42, 57%; chi-square test, P > 0.05). In experiment 2, COC were collected from slaughtered mares and from experimental mares and analysed after 30 h of in vitro development. We observed zygotes with 2 highly decondensed pronuclei, pronuclei decondensation being the first step of embryo development. For oocytes collected from slaughtered mares, the percentage of zygotes was similar for oocytes matured in IVM medium (8/11, 73%) or FF (10/15, 67%). For oocytes collected by ovum pickup, the percentage was similar for IVM medium (3/5, 60%) or FF (6/8, 75%). We also observed some embryonic structures with several nuclei, but the quality of these embryos was poor. In conclusion, we have established an efficient IVM-IVF technique that allows the first step of embryo development. Because we obtained similar results for 4 years, we consider that this efficient technique is repeatable. Further experiments are in progress to improve the quality of the embryos.


2009 ◽  
Vol 26 (1) ◽  
pp. 42-47
Author(s):  
Hitoshi Ushijima ◽  
Kiyoshi Akiyama ◽  
Toshio Tajima

2018 ◽  
Vol 54 (2) ◽  
pp. 289-299 ◽  
Author(s):  
Carolina Gonzales da Silva ◽  
Carlos Frederico Martins ◽  
Heidi Christina Bessler ◽  
Álvaro Moraes da Fonseca Neto ◽  
Tereza Cristina Cardoso ◽  
...  

2009 ◽  
Vol 21 (1) ◽  
pp. 114
Author(s):  
Y. Du ◽  
Z. Yang ◽  
B. Lv ◽  
L. Lin ◽  
P. M. Kragh ◽  
...  

Delayed activation is commonly used in pig somatic cell nuclear transfer (SCNT) where electrical activation is followed by chemical activation. However, chemical incubation of several hours (up to 4 or 6) is logistically not very convenient even though handmade cloning (HMC) could improve the overall efficiency of pig cloning (Du et al. 2007 Theriogenology 68, 1104–1110). It was reported that a brief exposure of cycloheximide (CX) before electrical activation could significantly increase developmental rate and total blastocyst cell number when simultaneous activation was performed in micromanipulator-based pig cloning (Naruse et al. 2007 Theriogenology 68, 709–716). The purpose of our present work is to investigate whether such activation method is also applicable for pig HMC. Data were analyzed by t-test using SPSS (11.0, SPSS Inc., Chicago, IL, USA). After 42 h in vitro maturation, cumulus cells were removed. In vitro-cultured porcine fetal fibroblasts were used as donor cells. Cytoplast-fibroblast pairing, electrical fusion and activation of fused cytoplast-fibroblast pairs were performed as described previously (Kragh et al. 2005 Theriogenology 64, 1536–1545; Du et al. 2005 Cloning Stem Cells 7, 199–205). Three groups were compared due to different activation protocol. In Group 1 (control), reconstructed embryos were cultured in porcine zygote medium 3 (PZM3) supplemented with 4 mg mL–1 BSA, 5 μg mL–1 cytochalasin B (CB), and 10 μg mL–1 CX for 4 h. In Group 2 (CX priming), fused pairs and the other halves of cytoplasts were incubated in HEPES-buffered TCM-199 medium supplemented with 10% calf serum, 10 μg mL–1 CX for 10 min just before the second fusion or electrical activation. In Group 3 (CB + CX priming), treatment similar to Group 2 was performed except that additional 5 μg mL–1 CB was added for the 10-min incubation. Reconstructed embryos were in vitro cultured in the well of the well (WOW) system for 6 days. Blastocyst rates and total cell numbers of Day 6 blastocysts were evaluated. As illustrated in Table 1, embryos pretreated with both CB and CX gave the best results, with better blastocyst formation (53.8 ± 4.8%; mean ± SEM) and higher cell number (77.2 ± 5.4) compared to the other 2 groups. Our data suggested that CX and CB priming could be used as a solution to the long chemical incubation in porcine SCNT by HMC, making the embryos more receptive to electrical activation. Table 1.In vitro development of HMC reconstructed embryos with different activation protocols


2004 ◽  
Vol 16 (2) ◽  
pp. 202 ◽  
Author(s):  
W.F. Swanson ◽  
A.L. Manharth ◽  
J.B. Bond ◽  
H.L. Bateman ◽  
R.L. Krisher ◽  
...  

Domestic cat embryos typically are cultured in media formulated for somatic cells or embryos from rodents or livestock species. Under these conditions, blastocyst development has been inconsistent and delayed relative to embryos grown in vivo, and embryo viability following transfer has been low. Our goal is to systematically define the culture requirements of the feline embryo to improve embryo development and viability. The objective of this study was to determine the ionic (NaCl, KCl, KH2PO4, and CaCl2:MgSO4) preferences of domestic cat IVF embryos. Anestral female cats were injected (i.m.) with 150IU eCG followed 84h later by 100IUhCG. Oocytes were recovered via laparoscopic follicular aspiration approximately 24h post-hCG injection (Day 0). Semen was collected from one of two males by means of an artificial vagina and washed once in HEPES-buffered IVF medium. Mature cumulus-oocyte complexes were co-incubated with 2.5–5×105 motile sperm mL−1 in IVF medium (100mM NaCl, 4.0mM KCl, 1.0mM KH2 PO4, 2.0mM CaCl2, 1.0mM MgSO4-7H2O, 25.0mM NaHCO3, 3.0mM glucose, 0.1mM pyruvate, 6.0mM L-lactate, 1.0mM glutamine, 0.1mM taurine, 1×MEM nonessential amino acids, 50μgmL−1 gentamicin, and 4.0mgmL−1 BSA) for 19 to 22h in 6% CO2 in air (38.7°C). Cumulus cells were removed and embryos cultured (8–11 embryos/50μL drop; 6% CO2, 5% O2, 89% N2, 38.7°C) in media containing 100.0 or 120.0mM NaCl, 4.0 or 8.0mM KCl, 0.25 or 1.0mM KH2PO4, and 1.0mM:2.0mM or 2.0mM:1.0mM CaCl2:MgSO4 (2×2×2×2 factorial design). The remaining components of the culture medium were identical to the IVF medium (but w/o gentamicin). Development to the blastocyst stage by Day 6, metabolism (glycolysis and pyruvate) of each blastocyst, and final cell number (Hoechst 33342 staining) of all embryos were evaluated. Final cell number of cleaved embryos and development to the blastocyst stage were analyzed using analysis of variance in the GLIMMIX macro of SAS. A total of 236 oocytes were inseminated, yielding 128 cleaved embryos (54%), including 6 blastocysts (4.7% of cleaved embryos). Cell number was not (P&gt;0.05) affected by NaCl, KCl, or KH2PO4 concentrations, but tended (P=0.057) to be higher after culture in 2.0mM:1.0mM CaCl2:MgSO4. Treatments did not significantly affect (P&gt;0.05) development to the blastocyst stage, but numerically more blastocysts were produced in 100.0mM NaCl (4/6), 8.0mM KCl (5/6), or 1.0mM KH2PO4 (5/6). Both CaCl2:MgSO4 ratios resulted in 3 blastocysts. Blastocysts contained 61.08±5.1 (mean±SEM, n=6) cells and actively metabolized glucose (glycolysis, 3.7±0.8pmol/embryo/3h or 0.06±0.01pmol/cell/3h) and pyruvate (0.75±0.27pmol/embryo/3h or 0.013±0.005pmol/cell/3h). These results suggest that the ionic composition of culture media influences the in vitro development of cat IVF embryos. (Supported by NIH grant RR15388.)


Author(s):  
Mustafa Numan BUCAK ◽  
Muharrem SATILMIŞ ◽  
Sedat Hamdi KIZIL ◽  
Tahir KARAŞAHİN ◽  
Numan AKYOL

2010 ◽  
Vol 37 (5) ◽  
pp. 446-452
Author(s):  
G. P. Malenko ◽  
A. V. Komissarov ◽  
O. I. Stepanov

Sign in / Sign up

Export Citation Format

Share Document