149 EFFECT OF RESVERATROL ANALOGUE ON DEVELOPMENT OF IN VITRO-FERTILIZED BOVINE EMBRYOS

2017 ◽  
Vol 29 (1) ◽  
pp. 183 ◽  
Author(s):  
T. A. Patrocínio ◽  
C. A. C. Fernandes ◽  
L. S. Amorim ◽  
J. R. Ribeiro ◽  
G. C. Macedo ◽  
...  

Oxidative stress is one of the main effects of in vitro culture. Generation of reactive oxygen species (ROS) by embryos can be enhanced by the sub-optimal in vitro culture conditions and are associated with a delay in embryonic development. However, supplementation of culture medium with antioxidant agents can minimize the effects of ROS (Guérin et al. 2001 Hum. Reprod. Update 7, 175–189). Resveratrol is an example of a potent antioxidant, and modifications in its structure can improve its biological activity. This study evaluated the effect of AR33 (formula with patent pending), an analogue of resveratrol with high antioxidant activity, on embryo development. Bovine cumulus-oocyte complexes recovered from ovaries collected at the slaughterhouse were in vitro matured for 24 h and oocytes were in vitro fertilized for 20 h, both at 38.8°C under 5% CO2 in air and high humidity. Partially denuded presumptive zygotes were randomly distributed in 4 treatments (with 6 replicates): 0 µM (control, n = 347), 0.1 µM (n = 337), 0.5 µM (n = 277), and 2.5 µM (n = 343) of AR33. The base medium was SOFaa supplemented with 2.5% FCS and incubation conditions were 38.8°C under 5% CO2 in air and high humidity. Half of culture medium was renewed (feeding) at Day 3 and 5 post-fertilization. Cleavage was evaluated at Day 3 and blastocyst rates at Day 7 and 8 post-fertilization. Data were analysed by logistic regression considering the significance level of P < 0.05. Values are shown as mean ± SEM. Cleavage rate was higher (P < 0.05) for 2.5 µM (69.0 ± 4.4%) than for 0, 0.1, and 0.5 µM AR33 (62.1 ± 2.0%, 60.7 ± 5.9%, and 56.7 ± 5.8%, respectively). At Day 7, the blastocyst rate was similar (P > 0.05) among 0.1, 0.5, and 2.5 µM (18.1 ± 5.4%, 17.5 ± 2.9%, and 19.4 ± 3.3%, respectively) and all of them were higher (P < 0.05) than 0 µM AR33 (12.4 ± 2.5%). At Day 8, there was again no difference (P > 0.05) among 0.1, 0.5, and 2.5 µM AR33 (21.0 ± 5.0%, 18.4 ± 2.1%, and 24.6 ± 3.3%, respectively) but only 0.1 and 2.5 µM showed higher (P < 0.05) blastocyst rate than 0 µM AR33 (15.2 ± 2.5%). In conclusion, the synthetic analogue of resveratrol tested in this study can improve bovine embryo development in culture medium supplemented with 2.5% FCS under 5% CO2 in air. A concentration of 2.5 µM AR33 can be a choice for further studies. This study was supported by Fapemig, CAPES, and CNPq.

2015 ◽  
Vol 27 (1) ◽  
pp. 154
Author(s):  
E. Corbin ◽  
A. Cordova ◽  
J. Grosbois ◽  
P. Mermillod

Previous experiments demonstrated that co-culture of bovine embryos with bovine oviducal epithelial cells (BOEC) improved blastocyst rate and quality (Cordova et al. 2014). However, the use of primary cell support for improving embryo development in vitro may introduce a higher variability of the results between different BOEC batches used, as well as sanitary risks. The use of well-controlled large batches of frozen BOEC may help to solve these problems. Therefore, the aim of the present study was to characterise the survival and functionality of frozen-thawed BOEC. Bovine oviducts attached to ovaries showing recent ovulation were collected at a local slaughterhouse during 4 replicates (3 oviducts per replicate). Epithelial cells were expelled by gentle squeezing and washed 3 times. Half of the cell pellet was diluted 100-fold in culture medium (TCM199 + 10% FCS) for culture of fresh cells. The other half was diluted 10-fold in cell freezing medium (TCM199 + 20% FCS + 10% dimethyl sulfoxide), allowed to equilibrate in this medium for 10 min, and frozen at –80°C in a container filled with isopropyl alcohol. After 4 h, the tubes were transferred into LN for at least 1 h. The tubes were then thawed (5 min in 37°C water bath), diluted 1 : 1 in cell culture medium, and centrifuged for 10 min at 100 × g. The pellet was then diluted 100× in cell culture medium. Fresh or frozen-thawed cells were seeded in 4-well NUNC plates for 7 days at 38.8°C in a humidified atmosphere with 5% CO2 in air. The medium was renewed every 48 h, and the viability of cells was assessed by calcein-AM and ethidium homodimer labelling. After 7 days of culture, the medium was replaced by SOF medium + 5% FCS, and bovine in vitro-produced zygotes were added the day after and co-cultured for 8 days at 38.8°C in a humidified atmosphere with 5% CO2 in air to evaluate embryo development. Half of the medium was renewed every 48 h. Frozen-thawed cells showed the same viability than fresh ones at Days 0 and 7 of culture and reached confluence at the same time (Day 7). Development results are shown in Table 1. Frozen and fresh cells support early embryo development at the same rate. In conclusion, the present study showed that BOEC frozen on the day of collection are equivalent to fresh BOEC in regards to their survival and proliferation and their ability to support early embryo development. At collection, the cells may face stresses that are just as considerable as freezing/thawing (temperature shock, scrapping, change of environment). This may explain why they are not affected by freezing than at collection. The differentiation status of these cells is now under analysis by immunocytochemistry. Table 1.Cleavage rate and blastocyst rate in 3 different types of culture systems


2007 ◽  
Vol 19 (1) ◽  
pp. 211 ◽  
Author(s):  
B. Merlo ◽  
E. Iacono ◽  
G. Mari

The role of progesterone (P4) and epidermal growth factor (EGF) in early bovine embryo development is still not clear. P4 has been administered at different times of embryo development, and a direct effect on IVF-derived bovine 8-cell embryos has been noted even if there was an interference due to the P4 vehicle (Ferguson et al. 2005 Reprod. Fertil. Dev. 17, 219 abst). EGF has been added to the culture medium from the presumptive zygote stage at different concentrations, resulting in improved blastocyst rates compared to that in control medium (Mtango et al. 2003 Theriogenology 59, 1393–1402; Sirisathien et al. 2003 Anim. Reprod. Sci. 77, 21–32), and gave results similar to those with 5% or 10% FCS (Palasz et al. 2000 Anim. Reprod. Sci. 58, 229–240). The objective if this experiment was to determine the effect of P4 and EGF on development of in vitro-produced bovine embryos when administered alone or in combination at the 8-cell stage in the absence of serum. In vitro-produced bovine 8-cell embryos were randomly allotted to treatments: (1) control, SOFaaBSA medium (BSA, 16 mg mL−1; n = 198); (2) P4, SOFaaBSA + P4 (15 ng mL−1 in ethanol; n = 198); (3) EGF, SOFaaBSA + EGF (25 ng mL−1; n = 200); (4) P4 + EGF, SOFaaBSA + P4 (15 ng mL−1 in ethanol) + EGF (25 ng mL−1; n = 201); and (5) FBS, SOFaaBSA + FBS (5%; n = 197). In order to minimize the toxic effect of ethanol, it was allowed to evaporate from the culture dish and then medium was added. All in vitro procedures were carried out at 38.5°C in a humidified atmosphere of 5% CO2 in air; presumptive zygotes were cultured in SOFaaBSA until 8-cell stage. Embryo development was evaluated on Day 6 and on Day 8 after IVF (Day 0), and rates calculated from 8-cell embryos. The study was done in 4 replicates and chi-square test was used for statistical analysis (Statistica for Windows; Stat Soft Inc., Tulsa, OK, USA); significance was assessed at P &lt; 0.05. Results are reported in Table 1. No differences were found in the number of morulae between P4 and control, between P4 + EGF and FBS, and between P4 + EGF and EGF (P &gt; 0.05), whereas the combination P4 + EGF was better than P4 alone (P &lt; 0.05). Blastocyst rate was not different (P &gt; 0.05) among EGF, P4 + EGF, and FBS groups. P4 achieved an higher (P &lt; 0.05) blastocyst rate than control but it was lower (P &lt; 0.05) than that of P4 + EGF or FBS. In conclusion, P4 alone improves embryo development from the 8-cell embryo to the blastocyst stage in a serum-free culture system, and EGF alone achieves a blastocyst rate not significantly different from that of FBS; furthermore, the combination of P4 and EGF can be considered the most suitable as an alternative to FBS because similar results were obtained in terms of both morulae and blastocysts. Table 1.Eight-cell bovine embryo development in SOFaaBSA medium in presence of P4, EGF, P4+EGF, or FBS


2021 ◽  
Vol 99 (Supplement_3) ◽  
pp. 310-310
Author(s):  
Saulo Menegatti Zoca ◽  
Julie Walker ◽  
Taylor Andrews ◽  
Adalaide C Kline ◽  
Jerica J Rich ◽  
...  

Abstract Sire conception rate (SCR) is a field measure of fertility among bulls, but it can be influenced by several factors (Sperm transport, sperm-egg binding, early embryo development, etc). The objective of this study was to evaluate the relationship between SCR, sperm motility, SERPINA5 concentrations, and in vitro embryo development. Measurements were performed in 19 bulls with SCR values ranging from -7.7 to 4.45. For each bull, an aliquot of frozen-thawed semen was used for analyses of total (TMOT) and progressive (PROG) motility. Remaining semen was fixed with 2% formaldehyde, and concentration of SERPINA5 was determined by immunolocalization (antibody SERPINA5/Dylight405; PA5-79976-Invitrogen / ab201798-Abcam). Mean fluorescence intensity was determined in ~200 sperm heads/bull. Approximately 149 oocytes/bull were fertilized in vitro for embryo development analysis (cleavage and blastocyst rates). Statistical procedures were performed in SAS (9.4) using the procedures CORR for correlations (SCR, TMOT, PROG, SERPINA5, cleavage and blastocyst) and GLIMMIX for comparison of “field-fertility” (SCR divided in HIGH or LOW) and “field-embryo-fertility” (LOW-SCR sires were divided based on blastocyst rate (HIGH or LOW) resulting in two classifications; LOW-HIGH≥31% and LOW-LOW≤26%, respectively). There were positive correlations (P &lt; 0.05) between cleavage-blastocyst (r=0.50), SERPINA5-cleavage (r=0.48), and TMOT-PROG (r=0.76). Sire SCR was not associated with SERPINA5, TMOT, PROG, cleavage and blastocyst rate (P &gt; 0.52). Among LOW-SCR sires, LOW-LOW sires (-4.83±0.60) tended to have a better SCR score than LOW-HIGH (-6.18±0.42) sires (P = 0.08), but there were no differences (P &gt; 0.43) between LOW-HIGH, LOW-LOW, and HIGH sires for SERPINA5, TMOT, PROG, and cleavage. In conclusion, some LOW SCR sires have good embryo development indicating a different mechanism for their low SCR; however, these differences in SCR could not be explained by TMOT, PROG, SERPINA5, cleavage and blastocyst. There were, however, positive correlations between cleavage-blastocyst rate, and SERPINA5-cleavage rate.


2006 ◽  
Vol 18 (2) ◽  
pp. 250
Author(s):  
M. G. Marques ◽  
A. B. Nascimento ◽  
V. P. Oliveira ◽  
A. R. S. Coutinho ◽  
M. E. O. A. Assumpção ◽  
...  

The present work evaluated the reversible meiosis inhibition effect on the development of swine embryos produced by in vitro fertilization (IVF) or parthenogenetic activation (PA). The efficiency of PZM3 and NCSU23 embryo culture media was also evaluated. Oocytes from ovaries collected at a slaughterhouse were subjected to IVM in two different groups: CHX (cycloheximide 5 µM for 10 h) and control, both with TCM-199 + 3.05 mM glucose + 0.91 mM sodium pyruvate + 10% porcine follicular fluid (pFF) + 0.57 mM cystein + 10 ng epidermal growth factor (EGF)/mL + 10 IU eCG/mL + 10 IU hCG/mL for the initial 22 h. In the remaining period (20 h for CHX and 22 h for control), medium without hormones was utilized. After IVM, oocytes were denuded and fertilized for 6 h (IFV) or the matured oocytes were submitted to activation by electric pulses (PA) (2 DC of 1.5 kV/cm for 30 µs), incubated for 1 h in culture medium with 10 μM of CHX, and again submitted to the same electric pulses for 60 µs. Embryo development was evaluated by cleavage rate on Day 3 and blastocyst rate and blastocyst cell number on Day 7 of culture. Cleavage and blastocyst rates were analyzed by the equality-of-two-ratios test and cell number by the Kruskal-Wallis and Mann-Whitney tests (P < 0.05). In relation to IVF, the PZM3 medium was more efficient than NCSU23 for cleavage rate in the CHX group (PZM3: 68.4%, NCSU23: 44.4%) and had a better blastocyst rate in the control group (PZM3: 13.4%, NCSU23: 5.6%). With reference to PA, NCSU23 presented better cleavage and blastocyst rates than PZM3 in the CHX group (NCSU23: 89.5%, PZM3: 78.5% and NCSU23: 20.4%, PZM3: 13.0%, respectively). In the control group, only the NCSU23 blastocyst rate was higher than that for PZM3 (NCSU23: 22.5%, PZM3: 10.8%). No culture medium effect on cell number mean of IVF and PA blastocysts was observed. Maturation block improved cleavage rates in IVF groups cultured with PZM3 (68.4% and 50.6%, respectively, for CHX and control) and in PA groups cultured with NCSU23 (89.5% and 80.3%, respectively, for CHX and control), but no improvement of blastocyst rates in both groups (IVF and PA) was verified. Table 1 below shows that maturation block decreased the IVF and increased the PA blastocyst cell numbers. As older oocytes are more effectively activated, oocytes blocked with CHX achieved the maturation stage faster than the control group, therefore resulting in high-quality PA blastocysts. In conclusion, PZM3 was more efficient for IVF embryo production in contrast to NCSU23, whereas NCSU23 can be indicated for PA embryo production. Moreover, maturation blockage with CHX influenced blastocyst cell number, decreasing in IVF embryos and increasing in PA embryos. Table 1. Mean (±SD) of blastocyst cell numbers for IVF or PA groups after in vitro maturation without (control) or with cycloheximide (CHX) and cultured in NCSU23 or PZM3 medium This work was supported by FAPESP 02/10747–1.


2014 ◽  
Vol 26 (1) ◽  
pp. 155
Author(s):  
L. Baldoceda ◽  
C. Vigneault ◽  
P. Blondin ◽  
C. Robert

Mitochondria play an important role during early mammalian embryo development through their diverse cellular functions, in particular creating balance between production of ATP by electron transport chain and oxidative stress. Embryonic mitochondria are inherited maternally and independently of the nuclear genome. They show limited activity during the early developmental stages before embryonic genome activation. It has been shown that in vitro culture (IVC) has an adverse effect on mitochondrial function in embryos. So far several attempts have been performed to improve and rescue the impaired mitochondria. It has been shown that vitamin K2 (a membrane-bound electron carrier, similar to ubiquinone) was used to rescue mitochondrial dysfunction and resulted in more efficient ATP production in eukaryotic cells (Vos et al. 2012 Science 336, 1306–1310). Therefore, the aim of the present study was to investigate the effects of supplementation of vitamin K2 on mitochondrial activity and blastocyst rate. Cumulus–oocytes complexes (n = 687) recovered from slaughtered animals, were matured and fertilized in vitro according to our standard procedures. After fertilization, zygotes were cultured in SOF media supplemented with 10 mg mL–1 BSA. At 96 h post-fertilization, vitamin K2 was added to the culture media (n = 448 oocytes). On Day 7, treatment embryos were compared with untreated controls (n = 239 oocytes). In vitro culture was carried out at 38.5°C under 5% CO2, 7% O2, and 88% N2. Differences among groups in blastocyst yield were analysed by ANOVA. Mitochondrial activity data was analysed by unpaired 2-tailed t-tests. Results show that the vitamin K2-treated group had a significantly (P < 0.05) higher blastocyst rate (+8.6%), expanded blastocyst rate (+7.8%), as well as better morphological quality compared with the control group. Furthermore, to evaluate mitochondria activity, pools of embryos of each treatment were labelled with a specific dye for active mitochondria (Mitotracker Red). A significantly higher intensity of Mitotracker Red (P < 0.05) was observed in the vitamin K2 treatment versus control group, as measured by fluorescent microscopy. In conclusion, for the first time, our data prove that supplementation of vitamin K2 during IVC of bovine embryos increases blastocyst rates and embryo quality. Future studies will focus on gene expression to identify targets implicated in impaired mitochondrial activity in in vitro bovine embryo production.


2014 ◽  
Vol 26 (1) ◽  
pp. 123
Author(s):  
Y. Liu ◽  
A. Lucas-Hahn ◽  
B. Petersen ◽  
R. Li ◽  
P. Hassel ◽  
...  

Two nuclear transfer (NT) techniques are routinely used to produce cloned animals, traditional cloning (TC) and handmade cloning (HMC). The TC embryos keep their zona and can be transferred at early stages, whereas HMC embryos are zona-free and must be cultured to the morula/blastocyst stage before transfer. Some studies have shown that in vitro culture reduces embryo development and quality, but it is not known whether embryos produced by TC or HMC differ because of the NT method or the in vitro culture. Therefore, we investigated the developmental competence and histone acetylation (H3K18ac) of porcine NT embryos produced by TC and HMC with (Day 5 and 6) or without (Day 0) in vitro culture. Nuclear transfer experiments were performed on same day (Day 0), using same batch of porcine oocytes and donor cells and same in vitro culture conditions. Cloning procedures were previously described (TC : Cloning Stem Cells 10 : 355; HMC : Zygote 20 : 61). Parthenogenetically activated embryos (PA) were used as control of activation and culture conditions. Embryos from all groups were collected for immunostaining of H3K18ac on Days 0, 5, and 6. The normalized H3K18ac level was calculated as previously described (Epigenetics 6 : 177). Cell numbers per blastocyst in each group were counted on Days 5 and 6. The cleavage rate (Day 2) and blastocyst rates (Days 5 and 6) between groups were analysed by Chi-squared test, whereas cell number per blastocysts and H3K18ac level between groups and days were analysed by ANOVA (SAS version 9.2; SAS Institute Inc., Cary, NC, USA). Cleavage rate of HMC embryos was lower than that of TC embryos, but blastocyst rate and cell number per blastocyst were higher in the HMC group compared with TC (Table 1). Differences of H3K18ac level between HMC, TC, and PA groups were only observed on Day 6 but not on Day 0 or Day 5. Within HMC and TC groups, there was no difference in H3K18ac level between Day 0 and Day 5, but the level was lower on Day 6 compared with Day 5 in the HMC group, whereas the TC group displayed the opposite pattern. In conclusion, NT embryos produced by HMC show higher blastocyst rate and cell number per blastocyst compared with TC embryos. Both in vitro culture and the NT method result in differences of the normalized H3K18ac levels. Further study is needed to investigate putative differences between NT embryos produced by HMC and TC compared to in vivo embryos also after transfer to recipients. Table 1.Cleavage and blastocyst rate, cell numbers, and normalized H3K18ac level for handmade cloning (HMC), traditional cloning (TC), and parthenogenetically activated (PA) embryos1


2010 ◽  
Vol 22 (1) ◽  
pp. 231
Author(s):  
J. Block ◽  
L. Bonilla ◽  
P. J. Hansen

The objective of the present study was to determine whether culture of bovine embryos in a proprietary serum-free culture medium, Block-Bonilla-Hansen-7 (BBH-7), could improve development to the blastocyst stage and enhance survival following vitrification. For Exp. 1, embryos were produced in vitro and cultured in BBH-7 or modified synthetic oviductal fluid (mSOF; as in zygote 10:341 except with 10 μL mL-1 of nonessential amino acids, 20 μL mL-1 of essential amino acids, and 1 mg mL-1 of polyvinyl alcohol instead of albumin) in 5% (v/v) oxygen. Grade 1 expanded blastocysts were harvested at Day 7 post-insemination and vitrified using the open-pulled straw method (Vagta et al. 1998 Mol. Reprod. Dev. 51, 53-58). Vitrified embryos were thawed and cultured in vitro in either mSOF or BBH-7 supplemented with 10% fetal bovine serum and 50 μM dithiolthreitol. Re-expansion and hatching rates were recorded at 24, 48, and 72 h post-thaw. There was no effect of culture medium on cleavage rate. The proportion of oocytes that developed to the blastocyst and advanced blastocyst stages (expanded, hatching, and hatched) at Day 7 was higher (P < 0.001) for embryos cultured in BBH-7 than for embryos cultured in mSOF (41.9 ± 2.0 v. 14.7 ± 2.0% and 31.1 ± 1.3 v. 6.4 ± 1.3%, respectively). There was no effect of culture medium on re-expansion rates at 24, 48, and 72 h post-thaw or on hatching rates at 48 or 72 h. However, the proportion of embryos that were hatching or had hatched by 24 h post-thaw was higher (P < 0.001) for BBH-7 than for mSOF (59.0 ± 0.5 v. 26.7 ± 0.5%). For Exp. 2, late lactation and/or repeat breeder, lactating Holstein cows were synchronized for timed embryo transfer using the OvSynch-56 protocol. Embryos were produced in vitro and cultured in BBH-7 in 5% (v/v) oxygen. Vitrified embryos were produced as for Exp. 1. Fresh embryos were grade 1 expanded blastocysts harvested at Day 7 after insemination. A single embryo was transferred at Day 7 after putative ovulation to all cows with a corpus luteum confirmed by ultrasonography. Pregnancy was diagnosed at Day 28-30 of gestation by ultrasonography. There was no difference in the proportion of recipients that became pregnant after receiving either a fresh (7/18 = 39%) or vitrified (10/27 = 37%) embryo cultured in BBH-7. The results of the present study indicate that BBH-7 can be used to increase the proportion of oocytes that develop to the blastocyst stage. Moreover, the results demonstrate that vitrified embryos produced after culture in BBH-7 can achieve pregnancy rates similar to those obtained using fresh embryos. Support: USDA 2006-55203-17390 and Southeast Milk Checkoff Program.


2013 ◽  
Vol 25 (1) ◽  
pp. 214
Author(s):  
B. C. S. Leão ◽  
N. A. S. Rocha ◽  
M. F. Accorsi ◽  
É. Nogueira ◽  
G. Z. Mingoti

The production of reactive oxygen species (ROS), such as superoxide anion (O2–), hydroxyl radical (OH–), hydrogen peroxide (H2O2) and organic peroxide, is a normal process that occur in the cellular mitochondrial respiratory chain (Morado et al. 2009 Reprod. Fert. Dev. 21, 608–614). Supplementation with antioxidants during in vitro culture (IVC) appears to increase the resistance of bovine embryos to the oxidative stress, and consequently improve embryo development and cryotolerance (Rocha et al. 2011 Reprod. Fert. Dev. 23 157–158). This study was conducted to evaluate the effects of period of supplementation with intra (cysteine, CIST) or extracellular (catalase, CAT) antioxidants during IVC on embryo development and cryotolerance. Cumulus–oocyte complexes (n = 1132) were maturated for 24 h in B199 medium, at 38.5°C and 5% CO2 in air. After fertilization (Day 0), zygotes were IVC for 7 days in SOF medium (0.5% BSA + 2.5% FCS) in 7% O2, 5% CO2 e 88% N2 atmosphere, at 38.5°C. The antioxidant supplementation was performed during all of the culture period (from Day 1 to Day 7) or during the first 72 h (from Day 1 to Day 3), with 0.6 mM CIST, 100 UI CAT or without antioxidants (CONTR). The cleavage and blastocyst rates were evaluated, respectively, at 72 and 168 h post-insemination, when expanded blastocysts grade I were vitrified (n = 91) by Vitri-Ingá® protocol (Ingámed®, Maringá, PR, Brazil). Then, they were thawed and cultured for 24 h to evaluate re-expansion rates. The differences between groups were analyzed by ANOVA followed by Tukey’s test, and re-expansion rates by chi-square test (P ≤ 0.05). The cleavage and blastocyst rates were, respectively, 83.52 ± 4.52a/36.19 ± 3.21a (CONTR), 79.16 ± 4.52a/38.08 ± 3.21a (CIST Day 3), 77.74 ± 4.52a/42.09 ± 3.21a (CAT Day 3), 73.57 ± 4.05a/11.15 ± 2.87b (CIST Day 7), 71.83 ± 4.05a/15.07 ± 2.87b (CAT Day 7). The embryo re-expansion rates were 90.00%a (CONTR), 93.33%a (CIST Day 3), 75.00%a (CIST Day 7), 63.64%a (CAT Day 3) and 75.00%a (CAT Day 7). Supplementation with antioxidants for 7 days of IVC impaired embryo development, compared with addition up to Day 3 (P ≤ 0.05). However, it did not affect in vitro embryo cryotolerance (P ≥ 0.05). Supplementation with antioxidants throughout all the IVC significantly impaired blastocyst rate, probably by exerting a toxic effect leading to an arrest of embryonic development. It is believed that prolonged culture in the presence of antioxidants results in excessive reduction of ROS leading to an imbalance of the cellular redox status. It is known that ROS, particularly H2O2, act on signaling pathways involved in the cellular proliferation and differentiation, in gene expression and metabolism during embryo development. Supplementation with antioxidants up to Day 3 did not differ from CONTR, probably due to low O2 tension, and the presence of antioxidants in FBS and BSA. In conclusion, supplementation with cysteine and catalase during all of the culture period impaired embryo development, however this reduction did not affect embryo survival after vitrification. Financial support was provided by FAPESP (#2011/18257-2). The authors acknowledge Ingámed, Alta Genetics Brazil.


1999 ◽  
Vol 1999 ◽  
pp. 2-2 ◽  
Author(s):  
M. Kuran ◽  
M.E. Staines ◽  
G.J. McCallum ◽  
A.G. Onal ◽  
T.G. McEvoy

Ovine embryos produced in synthetic oviduct fluid (SOF) medium or in coculture with granulosa cell monolayers supplemented with low (A; 120 μmol/l) and high (B; 190 μmol/l) ammonia-producing steer sera caused different degrees of fetal oversize (Carolan et al., 1998). The objective of the present study was to determine whether the effects on fetal growth induced by these sera were associated with alterations in early embryo development.A total of 911 bovine oocytes, used in 8 replicates to test the effect of three culture treatments on embryo development, were matured and fertilized in vitro (IVF= Day 0). Presumptive zygotes were allocated on Day 1 to culture in SOF supplemented with 10% v/v steer serum (SOF+A, n=308; SOF+B, n=302) or with amino acids plus 0.4% w/v crystalline BSA (SOFaaBSA, n=301). All cultures were in 20 μl droplets under oil (38.5°C; 5% CO2, 5% O2; 4 zygotes per drop) and droplets were renewed every 48 h. Cleavage rate was recorded on Day 3. On Days 7 and 8, blastocyst yields, grade 1 and 2 blastocysts, their cell numbers (by staining with Hoechst 33342) and their stage and diameter were determined.


1996 ◽  
Vol 8 (5) ◽  
pp. 835 ◽  
Author(s):  
T Pinyopummintr ◽  
BD Bavister

Effects of amino acids on early bovine embryo development in vitro were examined using a chemically-defined, protein-free culture medium. Bovine embryos produced in vitro were cultured from 18 h to 72 h post insemination in a simple medium containing lactate as the only energy source except for the amino acid treatments. Subsequently, embryos were transferred to TCM-199 supplemented with serum for blastocyst development to substantiate their developmental competence. Treatments were: (1) non-essential amino acids from TCM-199 (NEA); (2) essential amino acids from TCM-199 (EA); (3) NEA+EA; (4) Eagle's minimum essential medium amino acids (MEM AA); (5) 11 amino acids present in HECM-6 (11 AA); and (6) 0.2 mM glutamine (GLN). A higher proportion of embryos (percentage of inseminated ova) cleaved to the > or = 8-cell stage by 72 h post insemination in NEA (56.7%), EA (41.2%), 11 AA (40.3%) and GLN (51.1%) than in either NEA+EA (30.0%) or MEM AA (33.1%). However, after transfer to complex medium, embryos that had developed in EA, as well as those in MEM AA or NEA+EA, produced significantly fewer blastocysts (37.1%, 34.4% and 25.6% respectively) than those in NEA (56.7%), GLN (48.9%) or 11 AA (37.7%). The ability of blastocysts to hatch from their zonae pellucidae was also affected by amino acid treatment during cleavage stages. The present study indicated that the addition of NEA or GLN or 11 AA to a chemically-defined culture medium during the cleavage phase of bovine embryo development increases their subsequent ability to reach the blastocyst stage. These data have implications for understanding the nutritional needs of bovine embryos produced in vitro and for optimizing the composition of culture media to support their development.


Sign in / Sign up

Export Citation Format

Share Document