Ecological responses of Stipa steppe in Inner Mongolia to experimentally increased temperature and precipitation. 3. Soil respiration

2018 ◽  
Vol 40 (2) ◽  
pp. 153 ◽  
Author(s):  
Xuexia Wang ◽  
Yali Chen ◽  
Yulong Yan ◽  
Zhiqiang Wan ◽  
Ran Chao ◽  
...  

The response of soil respiration to simulated climatic warming and increased precipitation was evaluated on the arid–semi-arid Stipa steppe of Inner Mongolia. Soil respiration rate had a single peak during the growing season, reaching a maximum in July under all treatments. Soil temperature, soil moisture and their interaction influenced the soil respiration rate. Relative to the control, warming alone reduced the soil respiration rate by 15.6 ± 7.0%, whereas increased precipitation alone increased the soil respiration rate by 52.6 ± 42.1%. The combination of warming and increased precipitation increased the soil respiration rate by 22.4 ± 11.2%. When temperature was increased, soil respiration rate was more sensitive to soil moisture than to soil temperature, although the reverse applied when precipitation was increased. Under the experimental precipitation (20% above natural rainfall) applied in the experiment, soil moisture was the primary factor limiting soil respiration, but soil temperature may become limiting under higher soil moisture levels.

2014 ◽  
Vol 618 ◽  
pp. 380-387
Author(s):  
Jiang Ming Ma ◽  
Meng Wu ◽  
Ting Ting Zhan ◽  
Feng Tian ◽  
Shi Chu Liang

This experiment was conducted on the 4 years old Eucalyptus plantation in Beihai of Guangxi, southern China. From January to December 2013, in the spring, summer, autumn and winter, seasonal variation and diurnal variation of the soil respiration and its environmental factors had been observed, respectively. The results showed that: (1) Soil respirations has obvious seasonal characteristics, the soil respiration rate in each seasons showed that: summer> spring > autumn > winter. The heterotrophic respiration rate was higher than the autotrophic respiration rate. The contribution of autotrophic respiration rate in winter was higher than that in other three seasons. (2) Soil respiration has obvious diurnal characteristic, it could be expressed as a single-peak curve. But the maximum value of soil respiration appeared in different times in different seasons. (3) There existed positive correlation index exponential relationships between the soil temperature and the soil respiration rate and its components. Soil temperature changes could explain soil respiration, autotrophic respiration and heterotrophic respiration by 90.2%, 27.5% and 92.8%. Temperature sensitivity showed following order: the heterotrophic respiration rate> the soil respiration rate> the autotrophic respiration rate, in terms of affected by temperature, the heterotrophic respiration was higher than the autotrophic respiration. (4) There were notable positive correlations between soil moisture content and soil respiration rate. Obviously, soil moisture content could promote soil respiration in a certain range.


Soil Research ◽  
2014 ◽  
Vol 52 (5) ◽  
pp. 505 ◽  
Author(s):  
Ning Lu ◽  
Xing-Ren Liu ◽  
Zhang-Liu Du ◽  
Yi-Ding Wang ◽  
Qing-Zhong Zhang

The effect of biochar on soil respiration (Rs) over one maize-growing season was studied after 5 years of consecutive application in an intensive cropland in the North China Plain. The experiment was carried out in randomly arranged plots with four treatments being evaluated. Three replications were conducted per treatment: a control plot without biochar addition (CK), biochar incorporated at 4.5 t ha–1 year–1 (BC4.5), biochar incorporated at 9.0 t ha–1 year–1 (BC9.0), and incorporated wheat straw (SR). The Rs was determined throughout the growing season of maize in 2012. Soil temperature and moisture were measured simultaneously at 5 cm depth. The results showed that the seasonal and diurnal variations of Rs in the four different treatments were approximately equal, and there was a positive correlation between Rs and soil temperature. The Rs values of treatments BC4.5 and BC9.0 were significantly lower than of SR but not CK. Significant correlations between Rs and soil temperature and soil moisture were observed. Soil temperature had a stronger effect on Rs than did soil moisture, and Rs was more sensitive to soil temperature in the biochar treatments than in the SR and CK treatments. The application of biochar and straw increased the soil active organic carbon content, but an obvious relationship between Rs and the soil active organic carbon content was not found.


1999 ◽  
Vol 79 (1) ◽  
pp. 5-13 ◽  
Author(s):  
O. O. Akinremi ◽  
S. M. McGinn ◽  
H. D. J. McLean

Agricultural systems are sources and sinks for carbon and to quantify the net effect of these systems on atmospheric CO2 concentration, the amounts of carbon fixed in primary production and that respired by the soil must be known. The objectives of our study were (1) to quantify the amount of soil respiration from fallow and barley plots during the growing season; and (2) to determine the relationship between these fluxes and soil temperature and moisture. This study was conducted on field plots measuring 200 by 200 m with one plot planted to barley (Hordeum vulgare L.) while the other plot was in fallow. Two automated chambers were permanently installed in the fallow plot and three in the barley plot at the start of the growing season. When CO2 fluxes were integrated over a 24-h period, the daily soil respiration under fallow ranged from a low of 1.6 g CO2 m−2 d−1 on a dry day to a high of 8.3 g CO2 m−2 d−1 on a wet day. The corresponding values for barley were 3.3 and 18.5 g CO2 m−2 d−1 in 1994. Similar values were obtained in 1996 and, on average, daily soil respiration under barley was twice of that under fallow. The integrated daily CO2 flux under fallow was strongly related to daily soil moisture and mean soil temperature with moisture alone accounting for 76 to 80% of the variation in CO2 flux. While good relationships were obtained between soil moisture and CO2 flux under fallow, the relationship under barley was not as good. The CO2 fluxes, measured eight times per day, displayed a diurnal pattern similar to that of soil temperature; however, there was no consistent quantitative relationship between these 3-hourly fluxes and temperature. A poor relationship was obtained when the fluxes during several days were related to soil temperature as soil moisture confounded flux-temperature relationship. Under the semi-arid conditions of southern Alberta, moisture is the main parameter controlling soil respiration during the growing season. Key words: Soil respiration, soil moisture, soil temperature, CO2 flux, chamber measurements, diurnal CO2 flux


2011 ◽  
Vol 54 (1) ◽  
pp. 5-17 ◽  
Author(s):  
Mai Kukumägi ◽  
Veiko Uri ◽  
Olevi Kull

Abstract. Soil respiration resulting from microbial and root respiration is a major component of the forest carbon cycle. The response of soil respiration to varying environmental factors (soil temperature and soil moisture) was studied in a Norway spruce chronosequence composed of four age classes (4, 27, 36, and 84 year old) on Gleyic Podzol. Soil respiration was measured monthly with closed dynamic chamber system, soil temperature and soil moisture were measured simultaneously. Mean soil respiration rate averaged over three years was 3.3 μmol CO2 m-2s-1, ranging from 0.6 to 5.4 μmol CO2 m-2s-1, with the maximum occurring in August and the minimum in December. Stand age had a significant effect on soil respiration: the highest respiration rate was found in 27-year-old stand. Over three years an exponential relationship between soil respiration and soil temperature accounted for 68-81% of the seasonal variation, Q10 (the factor by which the respiration rate differs for a temperature interval of 10 °C) for the individual stands ranged between 4.4 and 5.4. The influence of soil moisture content on soil respiration was weak and revealed in dry conditions only. The results of this study can be used to help understand and predict the effect of harvest on soil respiration and how the respiration might respond to changing climate conditions.


Author(s):  
Jurgita SASNAUSKIENĖ ◽  
Nomeda SABIENĖ ◽  
Vitas MAROZAS ◽  
Laima ČESONIENĖ ◽  
Kristina LINGYTĖ

Forest ecosystems of different tree species participate actively in climatic and biotic processes, such as photosynthesis, plant and soil respiration, therefore knowledge of soil respiration, especially of CO2 emissions to the atmosphere is of great importance. The aim of the study was to determine soil respiration rate of stands of deciduous (Betula pubescens Ehrh., Quercus robur L.) and coniferous (Larix eurolepis Henry, Thuja occidentalis L.) tree species as well as impact of abiotic (soil temperature, humidity, electrical conductivity, pH) and biotic (abundance of undergrowth, shrub, herbs) factors. Measurements of CO2 emissions, temperature, moisture and electrical conductivity were performed in-situ in the stands of different tree species with portable ADC BioScientific LCpro+ system and digital electrochemical device “Wet” (Delta-T). Soil samples were collected for the physicochemical analysis simultaneously. Chemical analysis of soil samples was done at the lab of the Environmental Research of the Aleksandras Stulginskis University by standard methods. Soil respiration was highest in the stand of Thuja occidentalis and lowest in the stand of Betula pubescens. Soil respiration intensity of the tree stands increased as follow: Thuja˂ Quercus˂ Larix˂ Betula. In the coniferous tree stands, the soil respiration was lower on average 27% comparing to deciduous tree stands. Soil respiration rate increased with increase of herbaceous vegetation cover and temperature. Soil respiration rate was mostly influenced by abundance of herbaceous vegetation (r = 0.91) of all biotic factors investigated, while soil temperature (r = 0.75) of abiotic factors. 60 years old stands of different tree species formed specific conditions what influenced different soil respiration rates.


2009 ◽  
Vol 25 (5) ◽  
pp. 531-539 ◽  
Author(s):  
Minaco Adachi ◽  
Atsushi Ishida ◽  
Sarayudh Bunyavejchewin ◽  
Toshinori Okuda ◽  
Hiroshi Koizumi

Abstract:Spatial and seasonal variation in soil respiration rates were investigated in a tropical dry forest in Thailand. The spatial variation was examined at 50 points within a 2-ha plot in the forest floor during the dry and wet seasons. The seasonal and diurnal variations in soil respiration were measured at 16 and 5 points, respectively. The mean soil respiration rate during the wet season was 1041 ± 542 mg CO2 m−2 h−1 (mean ± SD), which is about twice that during the dry season. Soil respiration rate was negatively correlated with soil water content during the wet season. A polynomial equation using seasonal data describes soil respiration and water content: soil respiration rate increased with soil water content, but started to drop when soil water content exceeded 21%. The diurnal variation in soil respiration rate during the wet season was positively correlated with soil temperature, whereas during the wet season it was not correlated with soil temperature. The diurnal variation in soil respiration rate during the dry season showed a midday depression. The estimation of soil carbon flux with polynomial equations should incorporate different functions for the wet and dry seasons in tropical dry forests.


2014 ◽  
Vol 11 (19) ◽  
pp. 5567-5579 ◽  
Author(s):  
Y. Kim ◽  
K. Nishina ◽  
N. Chae ◽  
S. J. Park ◽  
Y. J. Yoon ◽  
...  

Abstract. The tundra ecosystem is quite vulnerable to drastic climate change in the Arctic, and the quantification of carbon dynamics is of significant importance regarding thawing permafrost, changes to the snow-covered period and snow and shrub community extent, and the decline of sea ice in the Arctic. Here, CO2 efflux measurements using a manual chamber system within a 40 m × 40 m (5 m interval; 81 total points) plot were conducted within dominant tundra vegetation on the Seward Peninsula of Alaska, during the growing seasons of 2011 and 2012, for the assessment of driving parameters of CO2 efflux. We applied a hierarchical Bayesian (HB) model – a function of soil temperature, soil moisture, vegetation type, and thaw depth – to quantify the effects of environmental factors on CO2 efflux and to estimate growing season CO2 emissions. Our results showed that average CO2 efflux in 2011 was 1.4 times higher than in 2012, resulting from the distinct difference in soil moisture between the 2 years. Tussock-dominated CO2 efflux is 1.4 to 2.3 times higher than those measured in lichen and moss communities, revealing tussock as a significant CO2 source in the Arctic, with a wide area distribution on the circumpolar scale. CO2 efflux followed soil temperature nearly exponentially from both the observed data and the posterior medians of the HB model. This reveals that soil temperature regulates the seasonal variation of CO2 efflux and that soil moisture contributes to the interannual variation of CO2 efflux for the two growing seasons in question. Obvious changes in soil moisture during the growing seasons of 2011 and 2012 resulted in an explicit difference between CO2 effluxes – 742 and 539 g CO2 m−2 period−1 for 2011 and 2012, respectively, suggesting the 2012 CO2 emission rate was reduced to 27% (95% credible interval: 17–36%) of the 2011 emission, due to higher soil moisture from severe rain. The estimated growing season CO2 emission rate ranged from 0.86 Mg CO2 in 2012 to 1.20 Mg CO2 in 2011 within a 40 m × 40 m plot, corresponding to 86 and 80% of annual CO2 emission rates within the western Alaska tundra ecosystem, estimated from the temperature dependence of CO2 efflux. Therefore, this HB model can be readily applied to observed CO2 efflux, as it demands only four environmental factors and can also be effective for quantitatively assessing the driving parameters of CO2 efflux.


Sign in / Sign up

Export Citation Format

Share Document