Higher-level relationships among the eucalypts are resolved by ITS-sequence data

2002 ◽  
Vol 15 (1) ◽  
pp. 49 ◽  
Author(s):  
Dorothy A. Steane ◽  
Dean Nicolle ◽  
Gay E. McKinnon ◽  
René E. Vaillancourt ◽  
Brad M. Potts

This expanded survey of ITS sequences represents the largest analysis of molecular data ever attempted on Eucalyptus. Sequences of the internal transcribed spacer (ITS) region of the nuclear ribosomal DNA were included in an analysis of 90 species of Eucalyptus s.s. and 28 species representing eight other genera (Allosyncarpia, Angophora, Arillastrum, Corymbia, Eucalyptopsis, Stockwellia, Lophostemon and Metrosideros). The results of the study indicate that Angophora and Corymbia form a well-supported clade that is highly differentiated from Eucalyptus s.s. Corymbia species are divided between two clades, one of which may be the sister to Angophora. Allosyncarpia, Arillastrum, Eucalyptopsis and ‘Stockwellia’ are also highly differentiated from Eucalyptus s.s. If the genus Eucalyptus is to be expanded to include Angophora and Corymbia(sensu Brooker 2000), ITS data suggest that Allosyncarpia, Eucalyptopsis, ‘Stockwellia’ and potentially Arillastrum should also be included in Eucalyptus s.l. The ITS data suggest that subg. Symphyomyrtus is paraphyletic and that subg. Minutifructus should be included within it. Within subg.Symphyomyrtus, only sect. Maidenaria appears to be monophyletic. Sections Adnataria and Dumaria are probably monophyletic; sections Exsertaria and Latoangulatae are very close and probably should be combined in a single section. Section Bisectae is polyphyletic and is divided into two distinct lineages. The phylogenetic groups depicted by ITS data are consistent with the frequency of natural inter-specific hybridisations as well as data from controlled crosses within subgenus Symphyomyrtus. The ITS data illustrate that subg. Idiogenes and western Australian monocalypts are early evolutionary lines relative to E. diversifolia, E. rubiginosa (monotypic subg. Primitiva) and the eastern monocalypts and that subg. Primitiva should be sunk into subg. Eucalyptus. Subgenus Eudesmia may be monophyletic, grouping with subgenera Idiogenes and Eucalyptus. Further work is required to confirm the phylogenetic positions of the monotypic subgenera Alveolata, Cruciformes, Acerosae and Cuboidea.

2006 ◽  
Vol 84 (2) ◽  
pp. 269-281 ◽  
Author(s):  
Suzanne I. Warwick ◽  
Ihsan A. Al-Shehbaz ◽  
Connie A. Sauder

Sequence data from the nuclear ribosomal internal transcribed spacer (ITS) region of 45 taxa were used to determine the phylogenetic relationship of Arabis arenicola to Arabis , Arabidopsis , Braya , and Eutrema , and that of Eutrema to the purportedly related genera Aphragmus , Lignariella , Neomartinella , Platycraspedum , Taphrospermum , and Thellungiella . Arabis arenicola was originally described as Eutrema in 1830, transferred to Arabis in 1898, and has remained in Arabis to the present, even though it is morphologically more similar to Arabidopsis, Braya, and Eutrema. Sequence data were obtained from representative taxa of Arabis, Arabidopsis, and related Boechera and Catolobus, Braya and Neotorularia, and Eutrema, Aphragmus, Lignariella, Neomartinella, Platycraspedum, Taphrospermum, and Thellungiella. The five Arabis arenicola accessions examined had ITS sequences that were identical to each other and to four Arabidopsis lyrata accessions. In both maximum parsimony and maximum likelihood analyses, Arabis arenicola fell within the Arabidopsis clade and was closely aligned with Arabidopsis lyrata. Two of six purportedly related genera were not closely related to Eutrema. Both analyses placed Lignariella within a separate well-supported clade with Aphragmus, while the other four genera, Neomartinella, Platycraspedum, Taphrospermum, and Thellungiella, fell within a well-supported clade with Eutrema. Morphology and molecular data strongly suggest transferring Arabis arenicola to Arabidopsis, expanding Aphragmus to include Lignariella, and expanding Eutrema to include Neomartinella, Platycraspedum, Taphrospermum, and Thellungiella. New combinations in Arabidopsis and Aphragmus are proposed.


Genome ◽  
1995 ◽  
Vol 38 (2) ◽  
pp. 211-223 ◽  
Author(s):  
C. Hsiao ◽  
N. J. Chatterton ◽  
K. H. Asay ◽  
K. B. Jensen

Phylogenetic relationships of 30 diploid species of Triticeae (Poaceae) representing 19 genomes were estimated from the sequences of the internal transcribed spacer (ITS) region of nuclear ribosomal DNA. The ITS sequence phylogeny indicated that: (i) each genome group of species is monophyletic, concordant with cytogenetic evidence; (ii) Hordeum (I) and Critesion (H) are basal; (iii) Australopyrum (W) is closely related to Agropyron (P); (iv) Peridictyon (G), Heteranthelium (Q), and Dasypyrum (V) are closely related to Pseudoroegneria (S); (v) most of the annuals, Triticum s.l. (A, B, D), Crithopsis (K), Taeniatherum (T), Eremopyrum (F), Henrardia (O), Secale (R), and two perennials, Thinopyrum (J) and Lophopyrum (E), all of Mediterranean origin, are a monophyletic group. However, phylogenetic trees based on morphology group these Mediteranean species with various perennial lineages of the Arctic-temperate region. The molecular data and biogeography of the tribe suggest that the Mediterranean lineage is derived from the Arctic-temperate lineage and that the two lineages have evolved in parallel. Extensive morphological parallelism apparently obscures the true genealogical history of the tribe when only morphology is considered.Key words: Poaceae, Triticeae, rDNA sequence, molecular phylogeny, parallel evolution.


2012 ◽  
Vol 554-556 ◽  
pp. 1690-1693 ◽  
Author(s):  
Shao Xuan Zhang ◽  
Xin Rui Liu ◽  
Bo Chuan Wang ◽  
Yun Hui Ling ◽  
De Jun Sun ◽  
...  

To find the differences in the internal transcribed spacer(ITS) sequences and provide scientific data for the authentication of Potentilla chinensis and its related species, we extracted the genome DNA from the leaves of 5 common Potetilla species in Jilin Province, amplified the ITS region using ITS universal primers of angiosperm, and sequenced the purified PCR products directly. Polymorphism of ITS sequences was found within P. chinensis and the sequence data suggested that our samples of this species might be related to hybridization. Other 4 species showed intraspecies-stability in ITS sequence. The ITS sequences of these 5 Potentilla species are significantly different. So ITS sequence analysis and other methods derived from it can be used in authentication of Potentilla.


IMA Fungus ◽  
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Kai Wang ◽  
Timo Sipilä ◽  
Kirk Overmyer

AbstractProtomyces is an understudied genus of yeast-like fungi currently defined as phytopathogens of only Umbelliferae and Compositae. Species relationships and boundaries remain controversial and molecular data are lacking. Of the 82 named Protomyces, we found few recent studies and six available cultures. We previously isolated Protomyces strains from wild Arabidopsis thaliana, a member of Brassicaceae, a family distant from accepted Protomyces hosts. We previously sequenced the genomes of all available Protomyces species, and P. arabidopsidicola sp. nov. strain C29, from Arabidopsis. Phylogenomics suggests this new species occupied a unique position in the genus. Genomic, morphological, and physiological characteristics distinguished P. arabidopsidicola sp. nov. from other Protomyces. Nuclear gene phylogenetic marker analysis suggests actin1 gene DNA sequences could be used with nuclear ribosomal DNA internal transcribed spacer sequences for rapid identification of Protomyces species. Previous studies demonstrated P. arabidopsidicola sp. nov. could persist on the Arabidopsis phyllosphere and Protomyces sequences were discovered on Arabidopsis at multiple sites in different countries. We conclude that the strain C29 represents a novel Protomyces species and propose the name of P. arabidopsidicola sp. nov. Consequently, we propose that Protomyces is not strictly associated only with the previously recognized host plants.


2000 ◽  
Vol 57 (2) ◽  
pp. 261-270 ◽  
Author(s):  
T. H. WOOD ◽  
W. M. WHITTEN ◽  
N. H. WILLIAMS

The phylogeny of Hedychium J. Koenig was estimated using sequence data of internal transcribed spacer regions 1 and 2 (ITS1, ITS2) and 5.8S nuclear ribosomal DNA. Sequences were determined for 29 taxa, one interspecific hybrid of Hedychium and one species in each of 16 other genera of Zingiberaceae representing tribes Hedychieae, Globbeae, Zingibereae and Alpinieae. Cladistic analysis of these data strongly supports the monophyly of Hedychium, but relationships to other genera are poorly supported. Within Hedychium, four major clades are moderately supported. These clades are also distinguishable on the basis of number of flowers per bract and distribution. Stahlianthus, Curcuma, and Hitchenia also form a strongly supported clade. Based on this limited sample, the currently defined tribes of Zingiberoideae are not monophyletic. The Asiatic genera form a monophyletic group within this broadly defined Hedychieae. The taxonomy and biogeography of Hedychium are reviewed.


2015 ◽  
Vol 22 (2) ◽  
pp. 111-118 ◽  
Author(s):  
Fahad M.A. Al-Hemaid ◽  
M. Ajmal Ali ◽  
Joongku Lee ◽  
Soo-Yong Kim ◽  
Md. Oliur Rahman

The present study explored molecular phylogenetic analysis of 28 species of Euphorbia L. for the identification and establishment of molecular evolutionary relationships of Euphorbia scordifolia Jacq. within the genus based on the internal transcribed spacers (ITS) sequences (ITS1-5.8S-ITS2) of nuclear ribosomal DNA (nrDNA). The sequence similarity search using Basic Local Alignment Search Tool (BLAST) of the ITS sequence of E. scordifolia showed the closest sequence similarity to E. supina Raf. The analysis of ITS sequence data revealed four major clades consistent with subgeneric classifications of the genus. Molecular data support placement of E. scordifolia in the subgenus Chamaesyce.Bangladesh J. Plant Taxon. 22(2): 111-118, 2015 (December)


2013 ◽  
Vol 20 (2) ◽  
pp. 233-238 ◽  
Author(s):  
M. Ajmal Ali ◽  
Fahad M. Al-Hemaid ◽  
Ritesh K. Choudhary ◽  
Joongku Lee ◽  
Soo-Yong Kim ◽  
...  

The present study focuses on the status of Reseda pentagyna Abdallah & A.G. Miller (Resedaceae). The internal transcribed spacer (ITS) region of nuclear ribosomal DNA and chloroplast trnL-F gene of the questioned species were sequenced. The Basic Local Alignment Search Tool (BLAST) search showed maximum identity with R. stenostachya. The parsimony analysis of ITS, trnL-F and combined sequences data analyses revealed grouping of Reseda species consistent with established taxonomic sections of the genus, R. pentagyna showed proximity with R. stenostachya (100% bootstrap support), nested within the clade of section Reseda.DOI: http://dx.doi.org/10.3329/bjpt.v20i2.17397Bangladesh J. Plant Taxon. 20(2): 233-238, 2013


2020 ◽  
Vol 27 (03) ◽  
Author(s):  
VAN HONG THIEN ◽  
TRAN THỊ THU NGAN ◽  
LUU THAO NGUYEN ◽  
TRINH NGOC NAM

Crinum latifolium and C. asiaticum are the two species of genus Crinum, Amaryllidaceae family and they have highly medicinal values. Distinction between two species is challenging due to many similar morphological characteristics. In this study, we used molecular makers to distinguish the two species Crinum latifolium and C. asiaticum. The phylogenetic tree was constructed based on the DNA sequence data of the ITS (internal transcribed spacer) nuclear ribosomal DNA (nrDNA) sequences of Crinum latifolium and C. asiaticum. As a result, C. latifolium and C. asiaticum were sorted into two different groups in the phylogenetic tree. Therefore, C. latifolium and C. asiaticum were carried out to solve the taxonomic ambiguity.


2004 ◽  
Vol 129 (3) ◽  
pp. 368-373 ◽  
Author(s):  
Chinawat Yapwattanaphun ◽  
Suranant Subhadrabandhu ◽  
Chitose Honsho ◽  
Keizo Yonemori

The phylogenetic relationships among 17 Garcinia species including G. mangostana (mangosteen) were analyzed by comparing sequences of the internal transcribed spacer (ITS) region of nuclear ribosomal DNA (nrDNA). Both parsimonious and neighbor joining (NJ) analyses revealed that G. mangostana is closely related to G. malaccensis believed to be a progenitor of mangosteen. Another suspected progenitor of mangosteen, G. hombroniana, was more distant from G. mangostana than G. malaccensis phylogenetically. Garcinia hombroniana formed a cluster with G. rostrata, G, speciosa and G. sizygiifolia, and this cluster was connected with a cluster of G. mangostana and G. malaccensis. The ITS sequence analysis showed that G. atroviridis, G. cowa, G. dulcis, G. malaccensis, G. mangostana, G. rostrata and G. vilersiana have nucleotide additivity (two different nucleotides at the same nucleotide position) at several sites in the ITS region. The occurrence of these species might be related to hybridization with ancestors, but the genomic compositions, even chromosome numbers, of these species are still unknown.


Phytotaxa ◽  
2016 ◽  
Vol 272 (2) ◽  
pp. 149 ◽  
Author(s):  
HUAN-DI ZHENG ◽  
WEN-YING ZHUANG

Two new species of Crocicreas are established based on morphological features and DNA sequence data. Crocicreas luteolum is distinct by combination of the following features: caulicolous, hymenium surface yellow, margin plane, ectal excipulum of textura prismatica, asci J+, 62−81 × 6.0−7.7 µm, and ascospores fusoid, biguttulate, 11−14 × 2.2−3.3 µm. Crocicreas pseudobambusae is featured by combination of bambusicolous, hymenium surface white to beige, margin plane, ectal excipulum of textura intricata, asci J+, 36−58 × 3.5−5.5 µm, and ascospores ellipsoid, eguttulate, 4.5−7.7 × 1.8−2.5 µm. Description, illustration and comparison with related fungi are provided for each species. Sequence analyses of the internal transcribed spacer of nuclear ribosomal DNA are used to confirm their generic positions.


Sign in / Sign up

Export Citation Format

Share Document