Efficacy of various soil phosphate tests for predicting phosphate responsiveness and requirements of clover pastures on acidic tableland soils

Soil Research ◽  
1988 ◽  
Vol 26 (3) ◽  
pp. 479 ◽  
Author(s):  
ICR Holford ◽  
GJ Crocker

The efficacies of six different soil phosphate tests (Bray1, Bray2, alkaline fluoride, lactate, Olsen and Colwell) for predicting yield responsiveness and phosphate requirements of white clover pastures were investigated in 41 experiments over five years on acidic soils of the Northern Tablelands of New South Wales. The results contrasted with those obtained on slightly acid-to-alkaline wheat-growing soils and supported the dual hypothesis that a different type of phosphate extractant is required on acidic pasture soils from that required on more alkaline wheat-growing soils, and that phosphate sorptivity is of little importance on more acid soils. The Bray1 test was the most effective, and the lactate test least effective, in predicting responsiveness and fertilizer requirement. All soil tests, except Bray2 and lactate, were more effective on these acidic soils than on more alkaline wheat-growing soils. This was partly caused by a significant positive correlation between values of the more effective tests and yield response curvatures. However, there was no correlation between phosphate sorption and response curvature. The critical values for Bray1, fluoride and bicarbonate tests were similar to those on wheat-growing soils, but those for Bray2 and lactate were somewhat higher. Critical values for the Colwell test tended to increase with increasing phosphate sorptivity.

Soil Research ◽  
1985 ◽  
Vol 23 (4) ◽  
pp. 647 ◽  
Author(s):  
ICR Holford ◽  
BR Cullis

In a study using earlier data from 44 wheat field experiments on acidic (pH < 5.6) soils in southern New South Wales, eight soil phosphate extractants (Bray,, Bray,, neutral fluoride, Mehlich, Truog, lactate, Olsen and Colwell) were evaluated and calibrated in terms of responsiveness (�) and response curvature (C) parameters derived from the Mitscherlich equation. All extraction procedures, except Colwell, had a standard shaking time of 30 min and so1ution:soil ratio of 50. The order of efficacy of the tests was different from that obtained on moderately acid to alkaline soils of central and northern New South Wales. Neutral fluoride and acidic sulfate (Truog) replaced lactate as the best extractant, followed by the double acid Mehlich extractant. The Colwell test was more effective on these very acid soils than on the more alkaline soils, being equal to Bray1 and greatly superior to Bray2 and Olsen. The critical values of the fluoride, Mehlich, Truog, lactate and Colwell tests were significantly lower than they were for more alkaline soils in central New South Wales. The changes in extraction procedures could explain the lower critical values of the lactate and Truog tests, but differences in the critical values of the other three tests were inconsistent with changes in extraction procedures. The results support the hypothesis that a different phosphate extractant is required on very acid soils from that required on moderately acid to alkaline soils.


Soil Research ◽  
1988 ◽  
Vol 26 (1) ◽  
pp. 201 ◽  
Author(s):  
ICR Holford ◽  
EJ Corbin ◽  
CL Mullen ◽  
J Bradley

Yield response data from 92 phosphate/nitrogen field experiments were used to evaluate and calibrate eight soil phosphate tests (Bray1, Bray2, alkaline fluoride, Mehlich, Truog, lactate, Olsen and Colwell) on semi-arid wheat-growing soils of central New South Wales. The effects of some aspects of year-to-year variability in rainfall characteristics on the efficacy and critical values of soil tests were also investigated. The order of efficacy of the soil tests was similar to that on the central western slopes (57 experiments) and northern region (48 experiments) of New South Wales. Lactate was not only the most effective test, but it was the only test that had the same critical value (18 mg kg-1) for the three regions. The actual efficacy of most soil tests in this semi-arid region was lower; apparently because the year-to-year variability in the annual average rainfall was greater than in the other two regions. Some or all of the soil tests were significantly related to yield responsiveness in three of the five individual years (1966-70) of the experimental period. In the other two years, relationships were vitiated by either semi-drought conditions (1967) or late frosts (1969). In 1970, when rainfall conditions were most favourable to yield response, average response curvature was lower and soil test critical values were higher than in the other years.


Soil Research ◽  
2018 ◽  
Vol 56 (5) ◽  
pp. 503 ◽  
Author(s):  
Mark Conyers ◽  
Graeme Poile

It is both time consuming and costly to undertake two extractions of acidic soils when there is a need to measure exchangeable Al along with the other cations. There is some evidence that, although 1 M KCl is the standard procedure for exchangeable Al, the extraction of soil with 0.1 M BaCl2 + 0.1 M NH4Cl gives similar values. It would then be possible to measure all cations from one extraction. There is also concern that the assumption of trivalence of Al does not hold true in all situations, as commonly held to be true in the literature of the 1950s to the 1970s. Two experiments were conducted: the first a simple comparison of three extraction procedures in common use in New South Wales and the second a repeated comparison of two extractions but with more detailed measurements to enable interpretation of the results. During the second experiment we also measured the charge on the extracted Al by titration. The three methods for extraction of Al gave similar results despite very different procedures with respect to physical mixing, soil–solution contact time and strength of electrolyte, indicating that the pool of exchangeable Al was operationally well defined. The average charge on KCl-extracted Al was within error of 3 moles per mole of Al, supporting the current trivalent model of Alex. The 0.1 M BaCl2 + 0.1 M NH4Cl procedure estimated Alex successfully on acid soils of low effective cation exchange capacity (ECEC) (<10 cmolc/kg) and so can be used for extraction of all cations. However, as ECEC increased the 0.1 M BaCl2 + 0.1 M NH4Cl extraction tended to underestimate Alex compared with KCl on soils with above ~1.5 to 2 cmolc/kg of Alex.


Soil Research ◽  
1985 ◽  
Vol 23 (2) ◽  
pp. 167 ◽  
Author(s):  
ICR Holford ◽  
JM Morgan ◽  
J Bradley ◽  
BR Cullis

In a study using data from 57 wheat field experiments on the central-western slopes of New South Wales, eight soil phosphate tests (Bray,, Bray,, alkaline fluoride, Mehlich, Truog, lactate, Olsen and Colwell) were evaluated and calibrated in terms of responsiveness (�) and response curvature (C) parameters derived from the Mitscherlich equation. The results showed that, regardless of how well correlated a soil test is with yield responsiveness, it cannot give a satisfactory estimate of fertilizer requirement unless yield response curvature is also taken into account. The tendency of soil test values, especially of the Colwell test, to be negatively related to response curvature, and hence inversely related to fertilizer effectiveness, compounded the problem of directly relating soil test values to fertilizer requirement. The best test (lactate) accounted for only 28% of the variance in fertilizer requirement, compared with 50% of the variance in responsiveness, and the worst test (Colwell) was completely unrelated to fertilizer requirements. When fertilizer requirement was estimated from the lactate test value and the actual response curvature for each experiment, 68% of the variance (from the actual fertilizer requirement) was accounted for. Thirteen experiments were subject to drier conditions than the others, and these were less responsive and had lower fertilizer requirements relative to soil test values. In relation to yield responsiveness, the Colwell test was most sensitive (P < 0.001) to dry conditions, while the two best tests (lactate and Bray,) were the least sensitive (P > 0.05). The results demonstrated the superiority of acidic anionic extractants over alkaline bicarbonate extractants on moderately acid to alkaline wheat-growing soils.


1951 ◽  
Vol 2 (4) ◽  
pp. 377 ◽  
Author(s):  
AJ Anderson ◽  
KD McLachlan

A study was made of the residual effect of superphosphate applied to pasture on acid soils on the Southern Tablelands of New South Wales. The effect of the superphosphate on the development of clover and subsequent changes in soil fertility and development of grass was examined. Only a limited proportion of the phosphorus applied was taken up by the pasture over the period of the experiments, but the evidence obtained suggests that this cannot be ascribed merely to phosphate fixation in the soil. The residual phosphorus was little, if any, less effective than current dressings over a number of years. The total yield of pasture was dependent almost entirely on the amount of superphosphate applied, and frequency of application had little or no effect on the total yield. A single dose at the commencement of the trials was as effective in increasing the total yield and the uptake of phosphorus as were annual dressings. High fertility and grass dominance were achieved by heavy annual dressings of superphosphate or by application of the bulk of the phosphorus in the early years. Lighter annual dressings resulted in clover dominance. Some advantages of heavier, less frequent application of superphosphate are discussed. Competition for phosphorus was an important factor in suppression of the clover by the grass. Evidence was presented in support of a hypothesis that grass or clover dominance is dependent both upon the vigour and fertility requirements of the species and upon the relation between the nitrogen demand of the pasture unit and the soil nitrogen status.


1982 ◽  
Vol 22 (117) ◽  
pp. 317 ◽  
Author(s):  
KS Haddad ◽  
CJ Kaldor

Fifteen acidic soils (0-1 5 cm), three from each of the five main parent materials in the Central Tablelands of New South Wales, were collected for a glasshouse experiment. The hot water soluble boron content of these soils and some other related soil properties were measured. Boron at nil and 1.5 �g/g air-dried soil and lime at nil and 670 �g/g air-dried soil in a factorial combination were applied to the soils. The effects of the treatments on the performance of lucerne (Medicago sativa cv. Hunter River) grown on these soils were studied. Boron application tended to increase the production of lucerne dry matter on sandstone, shale and slate, and granitic soils, but not on basaltic or alluvial soils. Also, it increased the boron concentration in the leaves of lucerne grown in all soils and consequently, reduced the calcium to boron ratio. The boron levels that produced 90% of the maximum yield and below which boron deficiency symptoms were manifested by the plants, were 0.34 �g/g in air-dried soil and 25 �g/g in oven-dried leaves. There was a linear correlation (r = 0.98) between the hot water soluble boron content of the untreated soils and the boron concentration in the leaves. The hot water soluble boron content of the soils derived from sandstone, shale and slate, and granite was much lower than the basaltic or alluvial soils and were nearly equal to or below the determined critical level. Although liming had the tendency to induce the symptoms of boron deficiency, the effect of lime was greater than boron in increasing the yield. The role of lime in eliminating the problems of these acidic soils and hence promoting the yield of lucerne is discussed.


2005 ◽  
Vol 45 (4) ◽  
pp. 435 ◽  
Author(s):  
J. L. Cooper

Two forms of biosolids, with and without lime, were applied to acid soils at 2 sites in central New South Wales. Wheat and triticale were then grown on these sites to determine the effect of biosolids on crop growth and yield. The forms of biosolids used were dewatered sewage sludge cake, and N-Viro Soil which is a lime amended sewage sludge. Dewatered sewage sludge cake was applied at rates of 0, 6, 12 and 24 dry Mg/ha, and N-Viro soil at 0, 1.5, 3.0 and 4.5 dry Mg/ha. Biosolids produced grain yield increases of over 50% at both sites, with the largest yield increases at the highest rate of dewatered sewage sludge. Continued cropping at 1 of the sites showed that significant yield increases were still obtained 3 years after the initial application. The addition of lime and N-Viro Soil raised soil pH, and produced small but long lasting yield increases. However, the main benefit of biosolids seems to have come from the nutrients they supplied rather than changes in soil pH.


1968 ◽  
Vol 8 (35) ◽  
pp. 767
Author(s):  
RN Allen

Control of post-emergence damping-off, basal stem rot, and root rot of vetch (Vicia sativu) caused by Pythium debaryanum and other pythiaceous fungi, was obtained in a sod-sown field trial at Wollongbar, New South Wales, by applying the fungicide Dexon (R) (p-dimethylaminobenzenediazo sodium sulphonate) with the fertilizer in the furrow at sowing. Dexon improved plant establishment and survival, and increased plant vigour in the early stages of growth. Dry matter yield of vetch was increased from 206 lb an acre without Dexon, to 604 lb an acre with Dexon applied at 8 oz an acre (4.3 mg per row ft), with a corresponding reduction in the cost of fodder produced. Yield responses were also obtained at lower and higher rates, but at 64 oz an acre the Dexon was phytotoxic and no yield response was observed despite excellent disease control.


1985 ◽  
Vol 25 (1) ◽  
pp. 149 ◽  
Author(s):  
LJ Horsnell

The response of improved pastures to the application of superphosphate is low on the acid sedimentary soils, of the Southern Tablelands of New South Wales, which contain high levels of exchangeable aluminium. An investigation was made into the effect of surface-applied fertilizers on soil pH and on the establishment and growth of lucerne and phalaris on these soils. At 6 weeks after the application of gypsum, superphosphate, or superphosphate plus potassium sulfate, soil pH (H2O) had decreased markedly. This effect extended to a depth of 20 cm, but decreased with time. Initially, lime application increased the pH of the surface soil only. When superphosphate was applied with lime the pH of the soil under the lime layer decreased to the same level as that found in the soil treated with superphosphate alone. Lime, however, had penetrated into the subsoil 102 weeks after application and substantially more so after 13 years. Soil pH (0.01 M CaCl2) was not depressed by the application of fertilizers. Growth and persistence of both species in the first summer were poor, but growth responses to phosphorus, lime and nitrogen increased after the first year. Lucerne showed large growth responses to lime, greater than those found on plots receiving nitrogen fertilizer. Lime reduced aluminium levels both in lucerne plants and in soil. It is suggested that the slow penetration of lime into the soil, the relatively quick effect of superphosphate in increasing subsoil acidity, and high soil aluminium levels are together responsible for the poor persistence and slow growth of both lucerne and phalaris in the early stages. The subsequent large dry matter responses of lucerne to lime are possibly related to increased nitrogen fixation and a lowering of plant and soil aluminium levels. It is suggested that the lime responses of phalaris are also related to lower aluminium levels.


1982 ◽  
Vol 22 (115) ◽  
pp. 62 ◽  
Author(s):  
DP Heenan ◽  
LG Lewin

Two experiments were done at the Yanco Agricultural Research Centre, New South Wales, in 1978-79 and 1979-80 to measure the response of long grain rice, cv. Inga, to rates of nitrogen applied at two different times. The highest yields were recorded when the nitrogen was applied at panicle initiation. Increasing the rate from 100 to 200 kg N/ha at panicle initiation had no effect on grain yield. When the nitrogen was applied earlier, just before permanent water, yields were highest at 50 kg N/ha and declined at the highest rates (150 and 200 kg N/ha). This negative yield response was mainly due to a drop in the percentage of filled florets, and occurred despite an increase in panicle number.


Sign in / Sign up

Export Citation Format

Share Document