scholarly journals Replication of plant RNA virus genomes in a cell-free extract of evacuolated plant protoplasts

2004 ◽  
Vol 101 (7) ◽  
pp. 1863-1867 ◽  
Author(s):  
Keisuke Komoda ◽  
Satoshi Naito ◽  
Masayuki Ishikawa
2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Ahmad Ibrahim ◽  
Jelke Fros ◽  
Andre Bertran ◽  
Ferdyansyah Sechan ◽  
Valerie Odon ◽  
...  

AbstractFrequencies of CpG and UpA dinucleotides in most plant RNA virus genomes show degrees of suppression comparable to those of vertebrate RNA viruses. While pathways that target CpG and UpAs in HIV-1 and echovirus 7 genomes and restrict their replication have been partly characterised, whether an analogous process drives dinucleotide underrepresentation in plant viruses remains undetermined. We examined replication phenotypes of compositionally modified mutants of potato virus Y (PVY) in which CpG or UpA frequencies were maximised in non-structural genes (including helicase and polymerase encoding domains) while retaining protein coding. PYV mutants with increased CpG dinucleotide frequencies showed a dose-dependent reduction in systemic spread and pathogenicity and up to 1000-fold attenuated replication kinetics in distal sites on agroinfiltration of tobacco plants (Nicotiana benthamiana). Even more extraordinarily, comparably modified UpA-high mutants displayed no pathology and over a million-fold reduction in replication. Tobacco plants with knockdown of RDP6 displayed similar attenuation of CpG- and UpA-high mutants suggesting that restriction occurred independently of the plant siRNA antiviral responses. Despite the evolutionary gulf between plant and vertebrate genomes and encoded antiviral strategies, these findings point towards the existence of novel virus restriction pathways in plants functionally analogous to innate defence components in vertebrate cells.


1974 ◽  
Vol 36 (2) ◽  
pp. 299-310 ◽  
Author(s):  
Don Hendrick ◽  
Walter Knöchel ◽  
Walter Schwarz ◽  
Sabine Pitzel ◽  
Heinz Tiedemann

2020 ◽  
Vol 16 (1) ◽  
pp. 516-531
Author(s):  
Byungil Kim ◽  
Sarah Arcos ◽  
Katherine Rothamel ◽  
Manuel Ascano

2017 ◽  
Vol 3 (2) ◽  
Author(s):  
Bas B. Oude Munnink ◽  
My V.T. Phan ◽  
Peter Simmonds ◽  
Marion P.G. Koopmans ◽  
Paul Kellam ◽  
...  

Abstract Porcine stool-associated RNA virus (posavirus), and Human stool-associated RNA virus (husavirus) are viruses in the order Picornavirales recently described in porcine and human fecal samples. The tentative group (Posa and Posa-like viruses: PPLVs) also includes fish stool-associated RNA virus (fisavirus) as well as members detected in insects (Drosophila subobscura and Anopheles sinensis) and parasites (Ascaris suum). As part of an agnostic deep sequencing survey of animal and human viruses in Vietnam, we detected three husaviruses in human fecal samples, two of which share 97–98% amino acid identity to Dutch husavirus strains and one highly divergent husavirus with only 25% amino acid identity to known husaviruses. In addition, the current study found forty-seven complete posavirus genomes from pigs, ten novel rat stool-associated RNA virus genomes (tentatively named rasavirus), and sixteen novel bat stool-associated RNA virus genomes (tentatively named basavirus). The five expected Picornavirales protein domains (helicase, 3C-protease, RNA-dependent RNA polymerase, and two Picornavirus capsid domain) were found to be encoded by all PPLV genomes. In addition, a nucleotide composition analysis revealed that the PPLVs shared compositional properties with arthropod viruses and predicted non-mammalian hosts for all PPLV lineages. The study adds seventy-six genomes to the twenty-nine PPLV genomes currently available and greatly extends our sequence knowledge of this group of viruses within the Picornavirales order.


2020 ◽  
Vol 102 (10) ◽  
pp. 556-567
Author(s):  
Awanish Kumar ◽  
Bablu Prasad ◽  
Jayanand Manjhi ◽  
Kumar Suranjit Prasad

mSphere ◽  
2019 ◽  
Vol 4 (2) ◽  
Author(s):  
Marli Vlok ◽  
Andrew S. Lang ◽  
Curtis A. Suttle

ABSTRACTRNA viruses, particularly genetically diverse members of thePicornavirales, are widespread and abundant in the ocean. Gene surveys suggest that there are spatial and temporal patterns in the composition of RNA virus assemblages, but data on their diversity and genetic variability in different oceanographic settings are limited. Here, we show that specific RNA virus genomes have widespread geographic distributions and that the dominant genotypes are under purifying selection. Genomes from three previously unknown picorna-like viruses (BC-1, -2, and -3) assembled from a coastal site in British Columbia, Canada, as well as marine RNA viruses JP-A, JP-B, andHeterosigma akashiwoRNA virus exhibited different biogeographical patterns. Thus, biotic factors such as host specificity and viral life cycle, and not just abiotic processes such as dispersal, affect marine RNA virus distribution. Sequence differences relative to reference genomes imply that virus quasispecies are under purifying selection, with synonymous single-nucleotide variations dominating in genomes from geographically distinct regions resulting in conservation of amino acid sequences. Conversely, sequences from coastal South Africa that mapped to marine RNA virus JP-A exhibited more nonsynonymous mutations, probably representing amino acid changes that accumulated over a longer separation. This biogeographical analysis of marine RNA viruses demonstrates that purifying selection is occurring across oceanographic provinces. These data add to the spectrum of known marine RNA virus genomes, show the importance of dispersal and purifying selection for these viruses, and indicate that closely related RNA viruses are pathogens of eukaryotic microbes across oceans.IMPORTANCEVery little is known about aquatic RNA virus populations and genome evolution. This is the first study that analyzes marine environmental RNA viral assemblages in an evolutionary and broad geographical context. This study contributes the largest marine RNA virus metagenomic data set to date, substantially increasing the sequencing space for RNA viruses and also providing a baseline for comparisons of marine RNA virus diversity. The new viruses discovered in this study are representative of the most abundant family of marine RNA viruses, theMarnaviridae, and expand our view of the diversity of this important group. Overall, our data and analyses provide a foundation for interpreting marine RNA virus diversity and evolution.


Sign in / Sign up

Export Citation Format

Share Document