scholarly journals Quantitative NMR analysis of the protein G B1 domain in Xenopus laevis egg extracts and intact oocytes

2006 ◽  
Vol 103 (32) ◽  
pp. 11904-11909 ◽  
Author(s):  
P. Selenko ◽  
Z. Serber ◽  
B. Gadea ◽  
J. Ruderman ◽  
G. Wagner
1976 ◽  
Vol 65 (5) ◽  
pp. 738-740 ◽  
Author(s):  
R.J. Warren ◽  
J.E. Zarembo ◽  
D.B. Staiger ◽  
A. Post

2015 ◽  
Vol 35 (15) ◽  
pp. 2626-2640 ◽  
Author(s):  
Lingjun Meng ◽  
Jung-Eun Park ◽  
Tae-Sung Kim ◽  
Eun Hye Lee ◽  
Suk-Youl Park ◽  
...  

Serving as microtubule-organizing centers, centrosomes play a key role in forming bipolar spindles. The mechanism of how centrosomes promote bipolar spindle assembly in various organisms remains largely unknown. A recent study withXenopus laevisegg extracts suggested that the Plk1 ortholog Plx1 interacts with the phospho-T46 (p-T46) motif ofXenopusCep192 (xCep192) to form an xCep192-mediated xAurA-Plx1 cascade that is critical for bipolar spindle formation. Here, we demonstrated that in cultured human cells, Cep192 recruits AurA and Plk1 in a cooperative manner, and this event is important for the reciprocal activation of AurA and Plk1. Strikingly, Plk1 interacted with Cep192 through either the p-T44 (analogous toXenopusp-T46) or the newly identified p-S995 motif via its C-terminal noncatalytic polo-box domain. The interaction between Plk1 and the p-T44 motif was prevalent in the presence of Cep192-bound AurA, whereas the interaction of Plk1 with the p-T995 motif was preferred in the absence of AurA binding. Notably, the loss of p-T44- and p-S995-dependent Cep192-Plk1 interactions induced an additive defect in recruiting Plk1 and γ-tubulin to centrosomes, which ultimately led to a failure in proper bipolar spindle formation and mitotic progression. Thus, we propose that Plk1 promotes centrosome-based bipolar spindle formation by forming two functionally nonredundant complexes with Cep192.


2012 ◽  
Vol 61 (11) ◽  
pp. 963-967 ◽  
Author(s):  
Taichi YAMAZAKI ◽  
Takeshi SAITO ◽  
Tooru MIURA ◽  
Toshihide IHARA

FEBS Letters ◽  
1995 ◽  
Vol 366 (2-3) ◽  
pp. 99-103 ◽  
Author(s):  
Naohiro Kobayashi ◽  
Shinya Honda ◽  
Hirofumi Yoshii ◽  
Hatsuho Uedaira ◽  
Eisuke Munekata

2000 ◽  
Vol 113 (11) ◽  
pp. 1973-1984 ◽  
Author(s):  
A.M. Fry ◽  
P. Descombes ◽  
C. Twomey ◽  
R. Bacchieri ◽  
E.A. Nigg

Nek2 is a mammalian cell cycle-regulated serine/threonine kinase that belongs to the family of proteins related to NIMA of Aspergillus nidulans. Functional studies in diverse species have implicated NIMA-related kinases in G(2)/M progression, chromatin condensation and centrosome regulation. To directly address the requirements for vertebrate Nek2 kinases in these cell cycle processes, we have turned to the biochemically-tractable system provided by Xenopus laevis egg extracts. Following isolation of a Xenopus homologue of Nek2, called X-Nek2B, we found that X-Nek2B abundance and activity remained constant through the first mitotic cycle implying a fundamental difference in Nek2 regulation between embryonic and somatic cell cycles. Removal of X-Nek2B from extracts did not disturb either entry into mitosis or the accompanying condensation of chromosomes providing no support for a requirement for Nek2 in these processes at least in embryonic cells. In contrast, X-Nek2B localized to centrosomes of adult Xenopus cells and was rapidly recruited to the basal body of Xenopus sperm following incubation in egg extracts. Recruitment led to phosphorylation of the X-Nek2B kinase. Most importantly, depletion of X-Nek2B from extracts significantly delayed both the assembly of microtubule asters and the recruitment of gamma-tubulin to the basal body. Hence, these studies demonstrate that X-Nek2B is required for efficient assembly of a functional zygotic centrosome and highlight the possibility of multiple roles for vertebrate Nek2 kinases in the centrosome cycle.


1974 ◽  
Vol 6 (8) ◽  
pp. 452-453 ◽  
Author(s):  
A. F. Cockerill ◽  
R. C. Harden ◽  
G. L. O. Davies ◽  
D. M. Rackham

Sign in / Sign up

Export Citation Format

Share Document