scholarly journals Regulation of blood-testis barrier dynamics by TGF- 3 is a Cdc42-dependent protein trafficking event

2010 ◽  
Vol 107 (25) ◽  
pp. 11399-11404 ◽  
Author(s):  
E. W. P. Wong ◽  
D. D. Mruk ◽  
W. M. Lee ◽  
C. Y. Cheng
2018 ◽  
Vol 114 (3) ◽  
pp. 551a
Author(s):  
Blanca B. Diaz-Rohrer ◽  
Kandice R. Levental ◽  
Ilya Levental

2006 ◽  
Vol 173 (4) ◽  
pp. 463-468 ◽  
Author(s):  
Susan M. Millard ◽  
Stephen A. Wood

Ubiquitylation is a key regulator of protein trafficking, and much about the functions of ubiquitin ligases, which add ubiquitin to substrates in this regulation, has recently come to light. However, a clear understanding of ubiquitin-dependent protein localization cannot be achieved without knowledge of the role of deubiquitylating enzymes (DUBs). DUBs, by definition, function downstream in ubiquitin pathways and, as such, have the potential to be the final editors of protein ubiquitylation status, thus determining substrate fate. This paper assimilates the current evidence concerning the substrates and activities of DUBs that regulate protein trafficking.


2017 ◽  
Author(s):  
Holly McDonough ◽  
Kaitlin C. Lenhart ◽  
Sarah M. Ronnebaum ◽  
Chunlian Zhang ◽  
Jie An ◽  
...  

ABSTRACTRecent evidence has implicated CHIP (carboxyl terminus of Hsc/Hsp70-interacting protein), a co-chaperone and ubiquitin ligase, in the functional support of several metabolism-related proteins, including AMPK and SirT6. In addition to previously reported aging and stress intolerance phenotypes, we find that CHIP -/- mice also demonstrate a Type II diabetes-like phenotype, including poor glucose tolerance, decreased sensitivity to insulin, and decreased insulin-stimulated glucose uptake in isolated skeletal muscle, characteristic of insulin resistance. In CHIP-deficient cells, glucose stimulation fails to induce translocation of Glut4 to the plasma membrane. This impairment in Glut4 translocation in CHIP-deficient cells is accompanied by decreased tubulin polymerization associated with decreased phosphorylation of stathmin, a microtubule-associated protein required for polymerization-dependent protein trafficking within the cell. Together, these data describe a novel role for CHIP in regulating microtubule polymerization that assists in glucose transporter translocation, promoting whole-body glucose homeostasis and sensitivity to insulin.


2014 ◽  
Vol 307 (7) ◽  
pp. E553-E562 ◽  
Author(s):  
Xiang Xiao ◽  
Dolores D. Mruk ◽  
Elissa W. P. Wong ◽  
Will M. Lee ◽  
Daishu Han ◽  
...  

The blood-testis barrier (BTB) is one of the tightest blood-tissue barriers in the mammalian body. However, it undergoes cyclic restructuring during the epithelial cycle of spermatogenesis in which the “old” BTB located above the preleptotene spermatocytes being transported across the immunological barrier is “disassembled,” whereas the “new” BTB found behind these germ cells is rapidly “reassembled,” i.e., mediated by endocytic vesicle-mediated protein trafficking events. Thus, the immunological barrier is maintained when preleptotene spermatocytes connected in clones via intercellular bridges are transported across the BTB. Yet the underlying mechanism(s) in particular the involving regulatory molecules that coordinate these events remains unknown. We hypothesized that c-Src and c-Yes might work in contrasting roles in endocytic vesicle-mediated trafficking, serving as molecular switches, to effectively disassemble and reassemble the old and the new BTB, respectively, to facilitate preleptotene spermatocyte transport across the BTB. Following siRNA-mediated specific knockdown of c-Src or c-Yes in Sertoli cells, we utilized biochemical assays to assess the changes in protein endocytosis, recycling, degradation and phagocytosis. c-Yes was found to promote endocytosed integral membrane BTB proteins to the pathway of transcytosis and recycling so that internalized proteins could be effectively used to assemble new BTB from the disassembling old BTB, whereas c-Src promotes endocytosed Sertoli cell BTB proteins to endosome-mediated protein degradation for the degeneration of the old BTB. By using fluorescence beads mimicking apoptotic germ cells, Sertoli cells were found to engulf beads via c-Src-mediated phagocytosis. A hypothetical model that serves as the framework for future investigation is thus proposed.


2020 ◽  
Author(s):  
Maurice Steenhuis ◽  
Gregory M. Koningstein ◽  
Julia Oswald ◽  
Tillman Pick ◽  
Sarah O’Keefe ◽  
...  

2018 ◽  
Vol 115 (7) ◽  
pp. E1675-E1683 ◽  
Author(s):  
Yun Kwon ◽  
Jinbo Shen ◽  
Myoung Hui Lee ◽  
Kyoung Rok Geem ◽  
Liwen Jiang ◽  
...  

Protein trafficking is a fundamental mechanism of subcellular organization and contributes to organellar biogenesis. AtCAP2 is an Arabidopsis homolog of the Mesembryanthemum crystallinum calcium-dependent protein kinase 1 adaptor protein 2 (McCAP2), a member of the syntaxin superfamily. Here, we show that AtCAP2 plays an important role in the conversion to the lytic vacuole (LV) during early plant development. The AtCAP2 loss-of-function mutant atcap2-1 displayed delays in protein storage vacuole (PSV) protein degradation, PSV fusion, LV acidification, and biosynthesis of several vacuolar proteins during germination. At the mature stage, atcap2-1 plants accumulated vacuolar proteins in the prevacuolar compartment (PVC) instead of the LV. In wild-type plants, AtCAP2 localizes to the PVC as a peripheral membrane protein and in the PVC compartment recruits glyceraldehyde-3-phosphate dehydrogenase C2 (GAPC2) to the PVC. We propose that AtCAP2 contributes to LV biogenesis during early plant development by supporting the trafficking of specific proteins involved in the PSV-to-LV transition and LV acidification during early stages of plant development.


2002 ◽  
Vol 12 (11) ◽  
pp. 885-893 ◽  
Author(s):  
Stephen K. Dove ◽  
Robert K. McEwen ◽  
Andrew Mayes ◽  
David C. Hughes ◽  
Jean D. Beggs ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document