scholarly journals Fuel and oxygen harvesting from Martian regolithic brine

2020 ◽  
Vol 117 (50) ◽  
pp. 31685-31689
Author(s):  
Pralay Gayen ◽  
Shrihari Sankarasubramanian ◽  
Vijay K. Ramani

NASA’s current mandate is to land humans on Mars by 2033. Here, we demonstrate an approach to produce ultrapure H2 and O2 from liquid-phase Martian regolithic brine at ∼−36 °C. Utilizing a Pb2Ru2O7−δ pyrochlore O2-evolution electrocatalyst and a Pt/C H2-evolution electrocatalyst, we demonstrate a brine electrolyzer with >25× the O2 production rate of the Mars Oxygen In Situ Resource Utilization Experiment (MOXIE) from NASA’s Mars 2020 mission for the same input power under Martian terrestrial conditions. Given the Phoenix lander’s observation of an active water cycle on Mars and the extensive presence of perchlorate salts that depress water’s freezing point to ∼−60 °C, our approach provides a unique pathway to life-support and fuel production for future human missions to Mars.

Life ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 844
Author(s):  
Ryan J. Keller ◽  
William Porter ◽  
Karthik Goli ◽  
Reece Rosenthal ◽  
Nicole Butler ◽  
...  

The future of long-duration spaceflight missions will place our vehicles and crew outside of the comfort of low-Earth orbit. Luxuries of quick resupply and frequent crew changes will not be available. Future missions will have to be adapted to low resource environments and be suited to use resources at their destinations to complete the latter parts of the mission. This includes the production of food, oxygen, and return fuel for human flight. In this chapter, we performed a review of the current literature, and offer a vision for the implementation of cyanobacteria-based bio-regenerative life support systems and in situ resource utilization during long duration expeditions, using the Moon and Mars for examples. Much work has been done to understand the nutritional benefits of cyanobacteria and their ability to survive in extreme environments like what is expected on other celestial objects. Fuel production is still in its infancy, but cyanobacterial production of methane is a promising front. In this chapter, we put forth a vision of a three-stage reactor system for regolith processing, nutritional and atmospheric production, and biofuel production as well as diving into what that system will look like during flight and a discussion on containment considerations.


2015 ◽  
Vol 15 (1) ◽  
pp. 65-92 ◽  
Author(s):  
Cyprien Verseux ◽  
Mickael Baqué ◽  
Kirsi Lehto ◽  
Jean-Pierre P. de Vera ◽  
Lynn J. Rothschild ◽  
...  

AbstractEven though technological advances could allow humans to reach Mars in the coming decades, launch costs prohibit the establishment of permanent manned outposts for which most consumables would be sent from Earth. This issue can be addressed byin situresource utilization: producing part or all of these consumables on Mars, from local resources. Biological components are needed, among other reasons because various resources could be efficiently produced only by the use of biological systems. But most plants and microorganisms are unable to exploit Martian resources, and sending substrates from Earth to support their metabolism would strongly limit the cost-effectiveness and sustainability of their cultivation. However, resources needed to grow specific cyanobacteria are available on Mars due to their photosynthetic abilities, nitrogen-fixing activities and lithotrophic lifestyles. They could be used directly for various applications, including the production of food, fuel and oxygen, but also indirectly: products from their culture could support the growth of other organisms, opening the way to a wide range of life-support biological processes based on Martian resources. Here we give insights into how and why cyanobacteria could play a role in the development of self-sustainable manned outposts on Mars.


Author(s):  
Daniela Billi ◽  
Beatriz Gallego Fernandez ◽  
Claudia Fagliarone ◽  
Salvatore Chiavarini ◽  
Lynn Justine Rothschild

Abstract The presence of perchlorate in the Martian soil may limit in-situ resource utilization (ISRU) technologies to support human outposts. In order to exploit the desiccation, radiation-tolerant cyanobacterium Chroococcidopsis in Biological Life Support Systems based on ISRU, we investigated the perchlorate tolerance of Chroococcidopsis sp. CCMEE 029 and its derivative CCMEE 029 P-MRS. This strain was obtained from dried cells mixed with Martian regolith simulant and exposed to Mars-like conditions during the BIOMEX space experiment. After a 55-day exposure of up to 200 mM perchlorate ions, a tolerance threshold value of 100 mM perchlorate ions was identified for both Chroococcidopsis strains. After 40-day incubation, a Mars-relevant perchlorate concentration of 2.4 mM perchlorate ions, provided as a 60 and 40% mixture of Mg- and Ca-perchlorate, had no negative effect on the growth rate of the two strains. A proof-of-concept experiment was conducted using Chroococcidopsis lysate in ISRU technologies to feed a heterotrophic bacterium, i.e. an Escherichia coli strain capable of metabolizing sucrose. The sucrose content was fivefold increased in Chroococcidopsis cells through air-drying and the yielded lysate successfully supported the bacterial growth. This suggested that Chroococcidopsis is a suitable candidate for ISRU technologies to support heterotrophic BLSS components in a Mars-relevant perchlorate environment that would prove challenging to many other cyanobacteria, allowing a ‘live off the land’ approach on Mars.


1997 ◽  
Author(s):  
Robert Zubrin ◽  
Mitchell Clapp ◽  
Tom Meyer ◽  
Robert Zubrin ◽  
Mitchell Clapp ◽  
...  

2020 ◽  
Vol 70 (suppl 1) ◽  
pp. bjgp20X711425
Author(s):  
Joanna Lawrence ◽  
Petronelle Eastwick-Field ◽  
Anne Maloney ◽  
Helen Higham

BackgroundGP practices have limited access to medical emergency training and basic life support is often taught out of context as a skills-based event.AimTo develop and evaluate a whole team integrated simulation-based education, to enhance learning, change behaviours and provide safer care.MethodPhase 1: 10 practices piloted a 3-hour programme delivering 40 minutes BLS and AED skills and 2-hour deteriorating patient simulation. Three scenarios where developed: adult chest pain, child anaphylaxis and baby bronchiolitis. An adult simulation patient and relative were used and a child and baby manikin. Two facilitators trained in coaching and debriefing used the 3D debriefing model. Phase 2: 12 new practices undertook identical training derived from Phase 1, with pre- and post-course questionnaires. Teams were scored on: team working, communication, early recognition and systematic approach. The team developed action plans derived from their learning to inform future response. Ten of the 12 practices from Phase 2 received an emergency drill within 6 months of the original session. Three to four members of the whole team integrated training, attended the drill, but were unaware of the nature of the scenario before. Scoring was repeated and action plans were revisited to determine behaviour changes.ResultsEvery emergency drill demonstrated improved scoring in skills and behaviour.ConclusionA combination of: in situ GP simulation, appropriately qualified facilitators in simulation and debriefing, and action plans developed by the whole team suggests safer care for patients experiencing a medical emergency.


Author(s):  
Liang Yao ◽  
Yongpeng Liu ◽  
Han-Hee Cho ◽  
Meng Xia ◽  
Arvindh Sekar ◽  
...  

The development of efficient and stable organic semiconductor-based photoanodes for solar fuel production is advanced by using a robust in situ-formed covalent polymer network together with a mesoporous inorganic film in a hybrid bulk heterojunction.


Sign in / Sign up

Export Citation Format

Share Document