The severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) infects cells through interaction of its spike protein (SARS2-S) with Angiotensin-converting enzyme 2 (ACE2) and activation by proteases, in particular transmembrane protease serine 2 (TMPRSS2). Viruses can also spread through fusion of infected with uninfected cells. We compared the requirements of ACE2 expression, proteolytic activation, and the sensitivity to inhibitors for SARS2-S-mediated and SARS-CoV-S(SARS1-S)-mediated cell-cell fusion. SARS2-S-driven fusion was moderately increased by TMPRSS2 and strongly by ACE2, while SARS1-S-driven fusion was strongly increased by TMPRSS2 and less so by ACE2 expression. In contrast to SARS1-S, SARS2-S-mediated cell-cell fusion was efficiently activated by Batimastat-sensitive metalloproteases. Mutation of the S1/S2 proteolytic cleavage site reduced effector-target-cell fusion when ACE2 or TMPRSS2 were limiting and rendered SARS2-S-driven cell-cell fusion more dependent on TMPRSS2. When both ACE2 and TMPRSS2 were abundant, initial target-effector-cell fusion was unaltered compared to wt SARS2-S, but syncytia remained smaller. Mutation of the S2’ site specifically abrogated activation by TMPRSS2 for both cell-cell fusion and SARS2-S-driven pseudoparticle entry but still allowed for activation by metalloproteases for cell-cell fusion and by cathepsins for particle entry. Finally, we found that the TMPRSS2 inhibitor Bromhexine was unable to reduce TMPRSS2-activated cell-cell fusion by SARS1-S and SARS2-S as opposed to the inhibitor Camostat. Paradoxically, Bromhexine enhanced cell-cell fusion in the presence of TMPRSS2, while its metabolite Ambroxol exhibited inhibitory activity in some conditions. On Calu-3 lung cells, Ambroxol weakly inhibited SARS2-S-driven lentiviral pseudoparticle entry, and both substances exhibited a dose-dependent trend towards weak inhibition of authentic SARS-CoV-2.
IMPORTANCE Cell-cell fusion allows the virus to infect neighboring cells without the need to produce free virus and contributes to tissue damage by creating virus-infected syncytia. Our results demonstrate that the S2’ cleavage site is essential for activation by TMPRSS2 and unravel important differences between SARS-CoV and SARS-CoV-2, among those greater dependence of SARS-CoV-2 on ACE2 expression and activation by metalloproteases for cell-cell fusion. Bromhexine, reportedly an inhibitor of TMPRSS2, is currently tested in clinical trials against coronavirus disease 2019. Our results indicate that Bromhexine enhances fusion in some conditions. We therefore caution against use of Bromhexine in higher dosage until its effects on SARS-CoV-2 spike activation are better understood. The related compound Ambroxol, which similarly to Bromhexine is clinically used as an expectorant, did not exhibit activating effects on cell-cell fusion. Both compounds exhibited weak inhibitory activity against SARS-CoV-2 infection at high concentrations, which might be clinically attainable for Ambroxol.