scholarly journals Cloning and tissue-specific expression of mouse macrophage colony-stimulating factor mRNA.

1987 ◽  
Vol 84 (5) ◽  
pp. 1157-1161 ◽  
Author(s):  
T. B. Rajavashisth ◽  
R. Eng ◽  
R. K. Shadduck ◽  
A. Waheed ◽  
C. M. Ben-Avram ◽  
...  
1994 ◽  
Vol 14 (1) ◽  
pp. 373-381 ◽  
Author(s):  
D E Zhang ◽  
C J Hetherington ◽  
H M Chen ◽  
D G Tenen

The macrophage colony-stimulating factor (M-CSF) receptor is expressed in a tissue-specific fashion from two distinct promoters in monocytes/macrophages and the placenta. In order to further understand the transcription factors which play a role in the commitment of multipotential progenitors to the monocyte/macrophage lineage, we have initiated an investigation of the factors which activate the M-CSF receptor very early during the monocyte differentiation process. Here we demonstrate that the human monocytic M-CSF receptor promoter directs reporter gene activity in a tissue-specific fashion. Since one of the few transcription factors which have been implicated in the regulation of monocyte genes is the macrophage- and B-cell-specific PU.1 transcription factor, we investigated whether PU.1 binds and activates the M-CSF receptor promoter. Here we demonstrate that both in vitro-translated PU.1 and PU.1 from nuclear extracts bind to a specific site in the M-CSF receptor promoter just upstream from the major transcription initiation site. Mutations in this site which eliminate PU.1 binding decrease M-CSF receptor promoter activity significantly in macrophage cell lines only. Furthermore, PU.1 transactivates the M-CSF receptor promoter in nonmacrophage cells. These results suggest that PU.1 plays a major role in macrophage gene regulation and development by directing the expression of a receptor for a key macrophage growth factor.


1994 ◽  
Vol 14 (1) ◽  
pp. 373-381
Author(s):  
D E Zhang ◽  
C J Hetherington ◽  
H M Chen ◽  
D G Tenen

The macrophage colony-stimulating factor (M-CSF) receptor is expressed in a tissue-specific fashion from two distinct promoters in monocytes/macrophages and the placenta. In order to further understand the transcription factors which play a role in the commitment of multipotential progenitors to the monocyte/macrophage lineage, we have initiated an investigation of the factors which activate the M-CSF receptor very early during the monocyte differentiation process. Here we demonstrate that the human monocytic M-CSF receptor promoter directs reporter gene activity in a tissue-specific fashion. Since one of the few transcription factors which have been implicated in the regulation of monocyte genes is the macrophage- and B-cell-specific PU.1 transcription factor, we investigated whether PU.1 binds and activates the M-CSF receptor promoter. Here we demonstrate that both in vitro-translated PU.1 and PU.1 from nuclear extracts bind to a specific site in the M-CSF receptor promoter just upstream from the major transcription initiation site. Mutations in this site which eliminate PU.1 binding decrease M-CSF receptor promoter activity significantly in macrophage cell lines only. Furthermore, PU.1 transactivates the M-CSF receptor promoter in nonmacrophage cells. These results suggest that PU.1 plays a major role in macrophage gene regulation and development by directing the expression of a receptor for a key macrophage growth factor.


BIO-PROTOCOL ◽  
2013 ◽  
Vol 3 (17) ◽  
Author(s):  
Ying Liu ◽  
Keqiang Chen ◽  
Chunyan Wang ◽  
Wanghua Gong ◽  
Teizo Yoshimura ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document