scholarly journals The Krüppel-associated Box (KRAB)-Zinc Finger Protein Kid-1 and the Wilms’ Tumor Protein WT1, Two Transcriptional Repressor Proteins, Bind to Heteroduplex DNA

1997 ◽  
Vol 272 (44) ◽  
pp. 27908-27912 ◽  
Author(s):  
Bernd Elser ◽  
Wilhelm Kriz ◽  
Joseph V. Bonventre ◽  
Christoph Englert ◽  
Ralph Witzgall
1993 ◽  
Vol 13 (7) ◽  
pp. 3872-3881
Author(s):  
F Estruch ◽  
M Carlson

The MSN2 gene was selected as a multicopy suppressor in a temperature-sensitive SNF1 protein kinase mutant of Saccharomyces cerevisiae. MSN2 encodes a Cys2His2 zinc finger protein related to the yeast MIG1 repressor and to mammalian early growth response and Wilms' tumor zinc finger proteins. Deletion of MSN2 caused no phenotype. A second similar zinc finger gene, MSN4, was isolated, and deletion of both genes caused phenotypic defects related to carbon utilization. Overexpression of the zinc finger regions was deleterious to growth. LexA-MSN2 and LexA-MSN4 fusion proteins functioned as strong transcriptional activators when bound to DNA. Functional roles of this zinc finger protein family are discussed.


Author(s):  
Min Duan ◽  
Xiao-Juan Ke ◽  
Hong-Xia Lan ◽  
Xi Yuan ◽  
Peng Huang ◽  
...  

Abstract Gibberellins (GAs) play important roles in the regulation of plant growth and development. The green revolution gene SD1 encoding gibberellin 20-oxidase 2 (GA20ox2) has been widely used in modern rice breeding. However, the molecular mechanism of how SD1/OsGA20ox2 expression is regulated remains unclear. Here, we report a Cys2/His2 zinc finger protein ZFP207 acting as a transcriptional repressor of OsGA20ox2. ZFP207 was mainly accumulated in young tissues and more specifically in culm nodes. ZFP207-overexpression (ZFP207OE) plants displayed semidwarfism phenotype and small grains by modulating cell length. RNA interference of ZFP207 caused increased plant height and grain length. The application of exogenous GA3 could rescue the semidwarf phenotype of ZFP207OE rice seedlings. Moreover, ZFP207 repressed the expression of OsGA20ox2 via binding to its promoter region. Taken together, ZFP207 acts as a transcriptional repressor of SD1/OsGA20ox2 and it may play a critical role in plant growth and development in rice through the fine-tuning of GA biosynthesis .


1994 ◽  
Vol 14 (3) ◽  
pp. 1979-1985
Author(s):  
M Lundin ◽  
J O Nehlin ◽  
H Ronne

MIG1 is a zinc finger protein that mediates glucose repression in the yeast Saccharomyces cerevisiae. MIG1 is related to the mammalian Krox/Egr, Wilms' tumor, and Sp1 finger proteins. It has two fingers and binds to a GCGGGG motif that resembles the GC boxes recognized by these mammalian proteins. We have performed a complete saturation mutagenesis of a natural MIG1 site in order to elucidate its binding specificity. We found that only three mutations within the GC box retain the ability to bind MIG1: G1 to C, C2 to T, and G5 to A. This result is consistent with current models for zinc finger-DNA binding, which assume that the sequence specificity is determined by base triplet recognition within the GC box. Surprisingly, we found that an AT-rich region 5' to the GC box also is important for MIG1 binding. This AT box is present in all natural MIG1 sites, and it is protected by MIG1 in DNase I footprints. However, the AT box differs from the GC box in that no single base within it is essential for binding. Instead, the AT-rich nature of this sequence seems to be crucial. The fact that AT-rich sequences are known to increase DNA flexibility prompted us to test whether MIG1 bends DNA. We found that binding of MIG1 is associated with bending within the AT box. We conclude that DNA binding by a simple zinc finger protein such as MIG1 can involve both recognition of the GC box and flanking sequence preferences that may reflect local DNA bendability.


1996 ◽  
Vol 93 (14) ◽  
pp. 6947-6952 ◽  
Author(s):  
C. C. Chang ◽  
B. H. Ye ◽  
R. S. Chaganti ◽  
R. Dalla-Favera

Sign in / Sign up

Export Citation Format

Share Document