scholarly journals Assembly of the Human Origin Recognition Complex Occurs through Independent Nuclear Localization of Its Components

2011 ◽  
Vol 286 (27) ◽  
pp. 23831-23841 ◽  
Author(s):  
Soma Ghosh ◽  
Alex P. Vassilev ◽  
Junmei Zhang ◽  
Yingming Zhao ◽  
Melvin L. DePamphilis

Initiation of eukaryotic genome duplication begins when a six-subunit origin recognition complex (ORC) binds to DNA. However, the mechanism by which this occurs in vivo and the roles played by individual subunits appear to differ significantly among organisms. Previous studies identified a soluble human ORC(2–5) complex in the nucleus, an ORC(1–5) complex bound to chromatin, and an Orc6 protein that binds weakly, if at all, to other ORC subunits. Here we show that stable ORC(1–6) complexes also can be purified from human cell extracts and that Orc6 and Orc1 each contain a single nuclear localization signal that is essential for nuclear localization but not for ORC assembly. The Orc6 nuclear localization signal, which is essential for Orc6 function, is facilitated by phosphorylation at its cyclin-dependent kinase consensus site and by association with Kpna6/1, nuclear transport proteins that did not co-purify with other ORC subunits. These and other results support a model in which Orc6, Orc1, and ORC(2–5) are transported independently to the nucleus where they can either assemble into ORC(1–6) or function individually.

2009 ◽  
Vol 8 (4) ◽  
pp. 496-510 ◽  
Author(s):  
Katrin Streckfuss-Bömeke ◽  
Florian Schulze ◽  
Britta Herzog ◽  
Eva Scholz ◽  
Gerhard H. Braus

ABSTRACT Pcl5 is a Saccharomyces cerevisiae cyclin that directs the phosphorylation of the general amino acid control transcriptional activator Gcn4 by the cyclin-dependent kinase (CDK) Pho85. Phosphorylation of Gcn4 by Pho85/Pcl5 initiates its degradation via the ubiquitin/proteasome system and is regulated by the availability of amino acids. In this study, we show that Pcl5 is a nuclear protein and that artificial dislocation of Pcl5 into the cytoplasm prevents the degradation of Gcn4. Nuclear localization of Pcl5 depends on the β-importin Kap95 and does not require Pho85, Gcn4, or the CDK inhibitor Pho81. Pcl5 nuclear import is independent on the availability of amino acids and is mediated by sequences in its C-terminal domain. The nuclear localization signal is distinct from other functional domains of Pcl5. This is corroborated by a C-terminally truncated Pcl5 variant, which carries the N-terminal nuclear domain of Pho80. This hybrid is still able to fulfill Pcl5 function, whereas Pho80, which is another Pho85 interacting cyclin, does not mediate Gcn4 degradation.


1998 ◽  
Vol 18 (2) ◽  
pp. 1115-1124 ◽  
Author(s):  
Margaret A. Kenna ◽  
Carrie Baker Brachmann ◽  
Scott E. Devine ◽  
Jef D. Boeke

ABSTRACT Retrotransposon Ty1 faces a formidable cell barrier during transposition—the yeast nuclear membrane which remains intact throughout the cell cycle. We investigated the mechanism by which transposition intermediates are transported from the cytoplasm (the presumed site of Ty1 DNA synthesis) to the nucleus, where they are integrated into the genome. Ty1 integrase has a nuclear localization signal (NLS) at its C terminus. Both full-length integrase and a C-terminal fragment localize to the nucleus. C-terminal deletion mutants in Ty1 integrase were used to map the putative NLS to the last 74 amino acid residues of integrase. Mutations in basic segments within this region decreased retrotransposition at least 50-fold in vivo. Furthermore, these mutant integrase proteins failed to localize to the nucleus. Production of virus-like particles, reverse transcriptase activity, and complete in vitro Ty1 integration resembled wild-type levels, consistent with failure of the mutant integrases to enter the nucleus.


2005 ◽  
Vol 25 (11) ◽  
pp. 4727-4741 ◽  
Author(s):  
Kalpana Ghoshal ◽  
Jharna Datta ◽  
Sarmila Majumder ◽  
Shoumei Bai ◽  
Huban Kutay ◽  
...  

ABSTRACT 5-Azacytidine- and 5-aza-deoxycytidine (5-aza-CdR)-mediated reactivation of tumor suppressor genes silenced by promoter methylation has provided an alternate approach in cancer therapy. Despite the importance of epigenetic therapy, the mechanism of action of DNA-hypomethylating agents in vivo has not been completely elucidated. Here we report that among three functional DNA methyltransferases (DNMT1, DNMT3A, and DNMT3B), the maintenance methyltransferase, DNMT1, was rapidly degraded by the proteasomal pathway upon treatment of cells with these drugs. The 5-aza-CdR-induced degradation, which occurs in the nucleus, could be blocked by proteasomal inhibitors and required a functional ubiquitin-activating enzyme. The drug-induced degradation occurred even in the absence of DNA replication. Treatment of cells with other nucleoside analogs modified at C-5, 5-fluorodeoxyuridine and 5-fluorocytidine, did not induce the degradation of DNMT1. Mutation of cysteine at the catalytic site of Dnmt1 (involved in the formation of a covalent intermediate with cytidine in DNA) to serine (CS) did not impede 5-aza-CdR-induced degradation. Neither the wild type nor the catalytic site mutant of Dnmt3a or Dnmt3b was sensitive to 5-aza-CdR-mediated degradation. These results indicate that covalent bond formation between the enzyme and 5-aza-CdR-incorporated DNA is not essential for enzyme degradation. Mutation of the conserved KEN box, a targeting signal for proteasomal degradation, to AAA increased the basal level of Dnmt1 and blocked its degradation by 5-aza-CdR. Deletion of the catalytic domain increased the expression of Dnmt1 but did not confer resistance to 5-aza-CdR-induced degradation. Both the nuclear localization signal and the bromo-adjacent homology domain were essential for nuclear localization and for the 5-aza-CdR-mediated degradation of Dnmt1. Polyubiquitination of Dnmt1 in vivo and its stabilization upon treatment of cells with a proteasomal inhibitor indicate that the level of Dnmt1 is controlled by ubiquitin-dependent proteasomal degradation. Overexpression of the substrate recognition component, Cdh1 but not Cdc20, of APC (anaphase-promoting complex)/cyclosome ubiquitin ligase reduced the level of Dnmt1 in both untreated and 5-aza-CdR-treated cells. In contrast, the depletion of Cdh1 with small interfering RNA increased the basal level of DNMT1 that blocked 5-aza-CdR-induced degradation. Dnmt1 interacted with Cdh1 and colocalized in the nucleus at discrete foci. Both Dnmt1 and Cdh1 were phosphorylated in vivo, but only Cdh1 was significantly dephosphorylated upon 5-aza-CdR treatment, suggesting its involvement in initiating the proteasomal degradation of DNMT1. These results demonstrate a unique mechanism for the selective degradation of DNMT1, the maintenance DNA methyltransferase, by well-known DNA-hypomethylating agents.


1997 ◽  
Vol 139 (2) ◽  
pp. 313-325 ◽  
Author(s):  
Irene Boche ◽  
Ellen Fanning

Nuclear protein import requires a nuclear localization signal (NLS) receptor and at least three other cytoplasmic factors. The α subunit of the NLS receptor, Rag cohort 1 (Rch1), enters the nucleus, probably in a complex with the β subunit of the receptor, as well as other import factors and the import substrate. To learn more about which factors and/or events end the import reaction and how the import factors return to the cytoplasm, we have studied nucleocytoplasmic shuttling of Rch1 in vivo. Recombinant Rch1 microinjected into Vero or tsBN2 cells was found primarily in the cytoplasm. Rch1 injected into the nucleus was rapidly exported in a temperature-dependent manner. In contrast, a mutant of Rch1 lacking the first 243 residues accumulated in the nuclei of Vero cells after cytoplasmic injection. After nuclear injection, the truncated Rch1 was retained in the nucleus, but either Rch1 residues 207–217 or a heterologous nuclear export signal, but not a mutant form of residues 207–217, restored nuclear export. Loss of the nuclear transport factor RCC1 (regulator of chromosome condensation) at the nonpermissive temperature in the thermosensitive mutant cell line tsBN2 caused nuclear accumulation of wild-type Rch1 injected into the cytoplasm. However, free Rch1 injected into nuclei of tsBN2 cells at the nonpermissive temperature was exported. These results suggested that RCC1 acts at an earlier step in Rch1 recycling, possibly the disassembly of an import complex that contains Rch1 and the import substrate. Consistent with this possibility, incubation of purified RanGTP and RCC1 with NLS receptor and import substrate prevented assembly of receptor/substrate complexes or stimulated their disassembly.


1992 ◽  
Vol 118 (5) ◽  
pp. 991-1002 ◽  
Author(s):  
D M Standiford ◽  
J D Richter

The 289 residue nuclear oncoprotein encoded by the adenovirus 5 Ela gene contains two peptide sequences that behave as nuclear localization signals (NLS). One signal, located at the carboxy terminus, is like many other known NLSs in that it consists of a short stretch of basic residues (KRPRP) and is constitutively active in cells. The second signal resides within an internal 45 residue region of E1a that contains few basic residues or sequences that resemble other known NLSs. Moreover, this internal signal functions in injected Xenopus oocytes, but not in transfected Xenopus A6 cells, suggesting that it could be regulated developmentally (Slavicek et al. 1989. J. Virol. 63:4047). In this study, we show that the activity of this signal is sensitive to ATP depletion in vivo, efficiently directs the import of a 50 kD fusion protein and can compete with the E1a carboxy-terminal NLS for nuclear import. In addition, we have delineated the precise amino acid residues that comprise the second E1a NLS, and have assessed its utilization during Xenopus embryogenesis. Using amino acid deletion and substitution analyses, we show that the signal consists of the sequence FV(X)7-20MXSLXYM(X)4MF. By expressing in Xenopus embryos a truncated E1a protein that contains only the second NLS and by monitoring its cytoplasmic/nuclear distribution during development with indirect immunofluorescence, we find that the second NLS is utilized up to the early neurula stage. In addition, there appears to be a hierarchy among the embryonic germ layers as to when the second NLS becomes nonfunctional. For this reason, we refer to this NLS as the developmentally regulated nuclear localization signal (drNLS). The implications of these findings for early development are discussed.


2018 ◽  
Author(s):  
H Fujimoto ◽  
T Ikuta ◽  
A Koike ◽  
M Koike

AbstractKu70 participates in various intra-and extra-nucleic processes. For multifunctional control, machinery that precisely regulates the intracellular localization of Ku70 is essential. Recently, it was reported that acetylation of Ku70 regulates its function. Here, we demonstrate that specific lysine residues in Ku70 that are targets of acetylation are critical for regulating nuclear transport in vivo. Ku70-GFP fusion proteins transiently expressed in cultured cells localized in the nucleus, whereas mimicking acetylation of K553 or K556 in the Ku70 nuclear localization signal (NLS) by substituting these lysine residues with glutamine markedly decreased the nuclear localization of Ku70. Moreover, the Ku70-importin interaction was suppressed in the K553Q and K556Q mutants. Theoretical estimations indicated that the binding energy between the Ku70 NLS and importin-α decreases with acetylation of lysine residues in the Ku70 NLS, similar to the case when these lysine residues are substituted with glutamine. These results suggest that acetylation of specific lysine residues in the Ku70 NLS is a key switch that controls the localization of Ku70 by modulating interactions between Ku70 and nuclear transport factors.


Sign in / Sign up

Export Citation Format

Share Document