scholarly journals Rosiglitazone Induction ofInsig-1in White Adipose Tissue Reveals a Novel Interplay of Peroxisome Proliferator-activated Receptor γ and Sterol Regulatory Element-binding Protein in the Regulation of Adipogenesis

2004 ◽  
Vol 279 (23) ◽  
pp. 23908-23915 ◽  
Author(s):  
Heidi R. Kast-Woelbern ◽  
Sharon L. Dana ◽  
Rosemary M. Cesario ◽  
Li Sun ◽  
Louise Y. de Grandpre ◽  
...  
Endocrinology ◽  
2008 ◽  
Vol 150 (1) ◽  
pp. 169-178 ◽  
Author(s):  
Elena Bonzón-Kulichenko ◽  
Dominik Schwudke ◽  
Nilda Gallardo ◽  
Eduardo Moltó ◽  
Teresa Fernández-Agulló ◽  
...  

Obesity and type 2 diabetes are associated with insulin and leptin resistance, and increased ceramide contents in target tissues. Because the adipose tissue has become a central focus in these diseases, and leptin-induced increases in insulin sensitivity may be related to effects of leptin on lipid metabolism, we investigated herein whether central leptin was able to regulate total ceramide levels and the expression of enzymes involved in ceramide metabolism in rat white adipose tissue (WAT). After 7 d central leptin treatment, the total content of ceramides was analyzed by quantitative shotgun lipidomics mass spectrometry. The effects of leptin on the expression of several enzymes of the sphingolipid metabolism, sterol regulatory element binding protein (SREBP)-1c, and insulin-induced gene 1 (INSIG-1) in this tissue were studied. Total ceramide levels were also determined after surgical WAT denervation. Central leptin infusion significantly decreased both total ceramide content and the long-chain fatty acid ceramide species in WAT. Concomitant with these results, leptin decreased the mRNA levels of enzymes involved in de novo ceramide synthesis (SPT-1, LASS2, LASS4) and ceramide production from sphingomyelin (SMPD-1/2). The mRNA levels of enzymes of ceramide degradation (Asah1/2) and utilization (sphingomyelin synthase, ceramide kinase, glycosyl-ceramide synthase, GM3 synthase) were also down-regulated. Ceramide-lowering effects of central leptin were prevented by local autonomic nervous system denervation of WAT. Finally, central leptin treatment markedly increased INSIG-1 mRNA expression and impaired SREBP-1c activation in epididymal WAT. These observations indicate that in vivo central leptin, acting through the autonomic nervous system, regulates total ceramide levels and SREBP-1c proteolytic maturation in WAT, probably contributing to improve the overall insulin sensitivity. Central leptin decreases total ceramide levels and prevents sterol regulatory element binding protein (SREBP-1C) proteolytic maturation in white adipose tissue, and probably, in this way, contributes to improve the overall insulin sensitivity.


Endocrinology ◽  
2007 ◽  
Vol 148 (12) ◽  
pp. 5604-5610 ◽  
Author(s):  
Nilda Gallardo ◽  
Elena Bonzón-Kulichenko ◽  
Teresa Fernández-Agulló ◽  
Eduardo Moltó ◽  
Sergio Gómez-Alonso ◽  
...  

Leptin reduces adiposity and exerts antisteatotic effects on nonadipose tissues. However, the mechanisms underlying leptin effects on lipid metabolism in liver and white adipose tissue have not been fully clarified. Here, we have studied the effects of central leptin administration on key enzymes and transcription factors involved in lipid metabolism in liver and epididymal adipose tissue. Intracerebroventricular leptin infusion for 7 d did not change leptin plasma levels but decreased triacylglyceride content in liver, epididymal adipose tissue, and plasma. In both tissues this treatment markedly decreased the expression of key enzymes of the de novo fatty acid (FA) synthesis such as acetyl-coenzyme A-carboxylase, FA synthase, and stearoyl-coenzyme A desaturase-1, in parallel with a reduction in mRNA expression of sterol regulatory element binding protein-1c in liver and carbohydrate regulatory element binding protein in adipose tissue. In addition, leptin also decreased phosphoenol-pyruvate carboxykinase-C expression in adipose tissue, an enzyme involved in glyceroneogenesis in this tissue. Central leptin administration down-regulates delta-6-desaturase expression in liver and adipose tissue, in parallel with the decrease of the expression of sterol regulatory element binding protein-1c in liver and peroxisome proliferator activated receptor α in adipose tissue. Finally, leptin treatment, by regulating adipose triglyceride lipase/hormone sensitive lipase/diacylglycerol transferase 1 expression, also established a new partitioning in the FA-triacylglyceride cycling in adipose tissue, increasing lipolysis and probably the FA efflux from this tissue, and favoring in parallel the FA uptake and oxidation in the liver. These results suggest that leptin, acting at central level, exerts tissue-specific effects in limiting fat tissue mass and lipid accumulation in nonadipose tissues, preventing the development of obesity and type 2 diabetes.


Aging Cell ◽  
2017 ◽  
Vol 16 (3) ◽  
pp. 508-517 ◽  
Author(s):  
Namiki Fujii ◽  
Takumi Narita ◽  
Naoyuki Okita ◽  
Masaki Kobayashi ◽  
Yurika Furuta ◽  
...  

2002 ◽  
Vol 61 (3) ◽  
pp. 371-374 ◽  
Author(s):  
Sander Kersten

Dietary fatty acids have numerous effects on cellular function, many of which are achieved by altering the expression of genes. The present paper reviews recent data on the mechanisms by which fatty acids influence DNA transcription, and focus specifically on the importance of three transcription factors: peroxisome proliferator-activated receptor α; liver X receptor α; sterol regulatory element-binding protein 1c. These data indicate that fatty acids induce or inhibit the mRNA expression of a variety of different genes by acting both as agonists and as antagonists for nuclear hormone receptors.


2007 ◽  
Vol 21 (11) ◽  
pp. 2698-2712 ◽  
Author(s):  
Bhaskar Ponugoti ◽  
Sungsoon Fang ◽  
Jongsook Kim Kemper

Abstract Insulin inhibits transcription of cholesterol 7α-hydroxylase (Cyp7a1), a key gene in bile acid synthesis, and the hepatic nuclear factor-4 (HNF-4) site in the promoter was identified as a negative insulin response sequence. Using a fasting/feeding protocol in mice and insulin treatment in HepG2 cells, we explored the inhibition mechanisms. Expression of sterol regulatory element-binding protein-1c (SREBP-1c), an insulin-induced lipogenic factor, inversely correlated with Cyp7a1 expression in mouse liver. Interaction of HNF-4 with its coactivator, peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α), was observed in livers of fasted mice and was reduced after feeding. Conversely, HNF-4 interaction with SREBP-1c was increased after feeding. In vitro studies suggested that SREBP-1c competed with PGC-1α for direct interaction with the AF2 domain of HNF-4. Reporter assays showed that SREBP-1c, but not of a SREBP-1c mutant lacking the HNF-4 interacting domain, inhibited HNF-4/PGC-1α transactivation of Cyp7a1. SREBP-1c also inhibited PGC-1α-coactivation of estrogen receptor, constitutive androstane receptor, pregnane X receptor, and farnesoid X receptor, implying inhibition of HNF-4 by SREBP-1c could extend to other nuclear receptors. In chromatin immunoprecipitation studies, HNF-4 binding to the promoter was not altered, but PGC-1α was dissociated, SREBP-1c and histone deacetylase-2 (HDAC2) were recruited, and acetylation of histone H3 was decreased upon feeding. Adenovirus-mediated expression of a SREBP-1c dominant-negative mutant, which blocks the interaction of SREBP-1c and HNF-4, partially but significantly reversed the inhibition of Cyp7a1 after feeding. Our data show that SREBP-1c functions as a non-DNA-binding inhibitor and mediates, in part, suppression of Cyp7a1 by blocking functional interaction of HNF-4 and PGC-1α. This mechanism may be relevant to known repression of many other HNF-4 target genes upon feeding.


Sign in / Sign up

Export Citation Format

Share Document