scholarly journals Resistance Exercise Increases Muscle Protein Synthesis and Translation of Eukaryotic Initiation Factor 2Bϵ mRNA in a Mammalian Target of Rapamycin-dependent Manner

2004 ◽  
Vol 280 (9) ◽  
pp. 7570-7580 ◽  
Author(s):  
Neil Kubica ◽  
Douglas R. Bolster ◽  
Peter A. Farrell ◽  
Scot R. Kimball ◽  
Leonard S. Jefferson
2020 ◽  
Vol 70 (1) ◽  
Author(s):  
Junya Takegaki ◽  
Riki Ogasawara ◽  
Karina Kouzaki ◽  
Satoshi Fujita ◽  
Koichi Nakazato ◽  
...  

Abstract Insufficient duration of recovery between resistance exercise bouts reduces the effects of exercise training, but the influence on muscle anabolic responses is not fully understood. Here, we investigated the changes in the distribution of eukaryotic initiation factor (eIF) 4E, a key regulator of translation initiation, and related factors in mouse skeletal muscle after three successive bouts of resistance exercise with three durations of recovery periods (72 h: conventional, 24 h: shorter, and 8 h: excessively shorter). Bouts of resistance exercise dissociated eIF4E from eIF4E binding protein 1, with the magnitude increasing with shorter recovery. Whereas bouts of resistance exercise with 72 h recovery increased the association of eIF4E and eIF4G, those with shorter recovery did not. Similar results were observed in muscle protein synthesis. These results suggest that insufficient recovery inhibited the association of eIF4E and eIF4G, which might cause attenuation of protein synthesis activation after bouts of resistance exercise.


2006 ◽  
Vol 290 (5) ◽  
pp. E882-E888 ◽  
Author(s):  
Ippei Yamaoka ◽  
Masako Doi ◽  
Mitsuo Nakayama ◽  
Akane Ozeki ◽  
Shinji Mochizuki ◽  
...  

The present study was conducted to determine the contribution of muscle protein synthesis to the prevention of anesthesia-induced hypothermia by intravenous administration of an amino acid (AA) mixture. We examined the changes of intraperitoneal temperature (Tcore) and the rates of protein synthesis ( Ks) and the phosphorylation states of translation initiation regulators and their upstream signaling components in skeletal muscle in conscious (Nor) or propofol-anesthetized (Ane) rats after a 3-h intravenous administration of a balanced AA mixture or saline (Sal). Compared with Sal administration, the AA mixture administration markedly attenuated the decrease in Tcore in rats during anesthesia, whereas Tcore in the Nor-AA group became slightly elevated during treatment. Stimulation of muscle protein synthesis resulting from AA administration was observed in each case, although Ks remained lower in the Ane-AA group than in the Nor-Sal group. AA administration during anesthesia significantly increased insulin concentrations to levels ∼6-fold greater than in the Nor-AA group and enhanced phosphorylation of eukaryotic initiation factor 4E-binding protein-1 (4E-BP1) and ribosomal protein S6 protein kinase relative to all other groups and treatments. The alterations in the Ane-AA group were accompanied by hyperphosphorylation of protein kinase B and the mammalian target of rapamycin (mTOR). These results suggest that administration of an AA mixture during anesthesia stimulates muscle protein synthesis via insulin-mTOR-dependent activation of translation initiation regulators caused by markedly elevated insulin and, thereby, facilitates thermal accumulation in the body.


2020 ◽  
Vol 128 (4) ◽  
pp. 830-837 ◽  
Author(s):  
Yuki Maruyama ◽  
Chisaki Ikeda ◽  
Koki Wakabayashi ◽  
Satoru Ato ◽  
Riki Ogasawara

High-intensity muscle contraction (HiMC) is known to induce muscle protein synthesis, a process in which mechanistic target of rapamycin (mTOR) is reported to play a critical role. However, the mechanistic details have not been completely elucidated. Here, we investigated whether Akt plays a role in regulating HiMC-induced mTORC1 activation and muscle protein synthesis using a rodent model of resistance exercise and MK2206 (an Akt kinase inhibitor). The right gastrocnemius muscle of male C57BL/6J mice aged 10 wk was isometrically contracted via percutaneous electrical stimulation (100 Hz, 5 sets of 10 3-s contractions, 7-s rest between contractions, and 3-min rest between sets), while the left gastrocnemius muscle served as a control. Vehicle or MK2206 was injected intraperitoneally 6 h before contraction. MK2206 inhibited both resting and HiMC-induced phosphorylation of Akt1 Ser-473 and Akt2 Ser-474. MK2206 also inhibited the resting phosphorylation of p70S6K and 4E-BP1, which are downstream targets of mTORC1; however, it did not inhibit the HiMC-induced increase in phosphorylation of these targets. Similarly, MK2206 inhibited the resting muscle protein synthesis, but not the resistance exercise-induced muscle protein synthesis. On the basis of these observations, we conclude that although Akt2 regulates resting mTORC1 activity and muscle protein synthesis, HiMC-induced increases in mTORC1 activity and muscle protein synthesis are Akt-independent processes. NEW & NOTEWORTHY Akt is well known to be an upstream regulator of mechanistic target of rapamycin (mTOR) and has three isoforms in mammals, namely, Akt1, Akt2, and Akt3. We found that high-intensity muscle contraction (HiMC) increases Akt1 and Akt2 phosphorylation; however, HiMC-induced increases in mTORC1 activity and muscle protein synthesis are Akt-independent processes.


2017 ◽  
Vol 123 (4) ◽  
pp. 710-716 ◽  
Author(s):  
Riki Ogasawara ◽  
Yuki Arihara ◽  
Junya Takegaki ◽  
Koichi Nakazato ◽  
Naokata Ishii

Resistance exercise (RE) volume is recognized as an important factor that stimulates muscle protein synthesis (MPS) and is considered, at least in part, to be involved in the mammalian target of rapamycin complex 1 (mTORC1)-associated signaling. However, the effects of relatively high-volume RE on mTORC1 and MPS remain unclear. In the present study, we used an animal model of RE to investigate the relationship between RE volume and MPS. Male Sprague-Dawley rats were subjected to RE, and muscle samples were obtained 6 h after performing 1, 3, 5, 10, or 20 sets of RE. Although 1 set of RE did not increase MPS [measured by the surface sensing of translation (SUnSET) method], multiple sets (3, 5, 10, and 20 sets) significantly increased MPS. However, the increase in MPS reached a plateau after 3 or 5 sets of RE, and no further increase in MPS was observed with additional RE sets. In contrast to the MPS response, we observed that p70S6K phosphorylation at Thr389, a marker of mTORC1 activity, and Ser240/244 phosphorylation of rpS6, a downstream target of p70S6K, gradually increased with higher RE volume. The above results suggest that the relationship between RE volume and MPS was not linear. Thus the increase in MPS with increasing RE volume saturates before p70S6K phosphorylation, suggesting a threshold effect for the relationship between p70S6K activation and MPS. NEW & NOTEWORTHY The aim of this study was to investigate the relationship between resistance exercise (RE) volume and muscle protein synthesis. We found that the relationship between RE volume and p70S6K phosphorylation was almost linear, but the increase in muscle protein synthesis began to plateau after approximately five sets of RE.


2003 ◽  
Vol 285 (6) ◽  
pp. E1205-E1215 ◽  
Author(s):  
Charles H. Lang ◽  
Robert A. Frost ◽  
Nobuko Deshpande ◽  
Vinayshree Kumar ◽  
Thomas C. Vary ◽  
...  

Acute alcohol (EtOH) intoxication impairs skeletal muscle protein synthesis. Although this impairment is not associated with a decrease in the total plasma amino acid concentration, EtOH may blunt the anabolic response to amino acids. To examine this hypothesis, rats were administered EtOH or saline (Sal) and 2.5 h thereafter were orally administered either leucine (Leu) or Sal. The gastrocnemius was removed 20 min later to assess protein synthesis and signaling components important in translational control of protein synthesis. Oral Leu increased muscle protein synthesis by the same magnitude in Sal- and EtOH-treated rats. However, the increase in the latter group was insufficient to overcome the suppressive effect of EtOH, and the rate of synthesis remained lower than that observed in rats from the Sal-Sal group. Leu markedly increased phosphorylation of Thr residues 36, 47, and 70 on 4E-binding protein (BP)1 in muscle from rats not receiving EtOH, and this response was associated with a redistribution of eukaryotic initiation factor (eIF) 4E from the inactive eIF4E · 4E-BP1 to the active eIF4E · eIF4G complex. In EtOH-treated rats, the Leu-induced phosphorylation of 4E-BP1 and changes in eIF4E availability were partially abrogated. EtOH also prevented the Leu-induced increase in phosphorylation of eIF4G, the serine/threonine protein kinase S6K1, and the ribosomal protein S6. Moreover, EtOH attenuated the Leu-induced phosphorylation of the mammalian target of rapamycin (mTOR). The ability of EtOH to blunt the anabolic effects of Leu could not be attributed to differences in the plasma concentrations of insulin, insulin-like growth factor I, or Leu. Finally, although EtOH increased the plasma corticosterone concentration, inhibition of glucocorticoid action by RU-486 was unable to prevent EtOH-induced defects in the ability of Leu to stimulate 4E-BP1, S6K1, and mTOR phosphorylation. Hence, ethanol produces a leucine resistance in skeletal muscle, as evidenced by the impaired phosphorylation of 4E-BP1, eIF4G, S6K1, and mTOR, that is independent of elevations in endogenous glucocorticoids.


2002 ◽  
Vol 283 (5) ◽  
pp. E1032-E1039 ◽  
Author(s):  
Thomas C. Vary ◽  
Gina Deiter ◽  
Scot R. Kimball

We reported that the inhibition of protein synthesis in skeletal muscle during sepsis correlated with reduced eukaryotic initiation factor eIF2B activity. The present studies define changes in eIF2Bε phosphorylation in gastrocnemius of septic animals. eIF2B kinase activity was significantly elevated 175% by sepsis compared with sterile inflammation, whereas eIF2B phosphatase activity was unaffected. Phosphorylation of eIF2Bε-Ser535 was significantly augmented over 2-fold and 2.5-fold after 3 and 5 days and returned to control values after 10 days of sepsis. Phosphorylation of glycogen synthase kinase-3 (GSK-3), a potential upstream kinase responsible for the elevated phosphorylation of eIF2Bε, was significantly reduced over 36 and 41% after 3 and 5 days and returned to control values after 10 days of sepsis. The phosphorylation of PKB, a kinase thought to directly phosphorylate and inactivate GSK-3, was significantly reduced ∼50% on day 3, but not on days 5 or 10, postinfection compared with controls. Treatment of septic rats with TNF-binding protein prevented the sepsis-induced changes in eIF2Bε and GSK-3 phosphorylation, implicating TNF in mediating the effects of sepsis. Thus increased phosphorylation of eIF2Bε via activation of GSK-3 is an important mechanism to account for the inhibition of skeletal muscle protein synthesis during sepsis. Furthermore, the study presents the first demonstration of changes in eIF2Bε phosphorylation in vivo.


2014 ◽  
Vol 117 (10) ◽  
pp. 1170-1179 ◽  
Author(s):  
Jennifer L. Steiner ◽  
Charles H. Lang

Alcohol (EtOH) decreases protein synthesis and mammalian target of rapamycin (mTOR)-mediated signaling and blunts the anabolic response to growth factors in skeletal muscle. The purpose of the current investigation was to determine whether acute EtOH intoxication antagonizes the contraction-induced increase in protein synthesis and mTOR signaling in skeletal muscle. Fasted male mice were injected intraperitoneally with 3 g/kg EtOH or saline (control), and the right hindlimb was electrically stimulated (10 sets of 6 contractions). The gastrocnemius muscle complex was collected 30 min, 4 h, or 12 h after stimulation. EtOH decreased in vivo basal protein synthesis (PS) in the nonstimulated muscle compared with time-matched Controls at 30 min, 4 h, and 12 h. In Control, but not EtOH, PS was decreased 15% after 30 min. In contrast, PS was increased in Control 4 h poststimulation but remained unchanged in EtOH. Last, stimulation increased PS 10% in Control and EtOH at 12 h, even though the absolute rate remained reduced by EtOH. The stimulation-induced increase in the phosphorylation of S6K1 Thr421/Ser424 (20–52%), S6K1 Thr389 (45–57%), and its substrate rpS6 Ser240/244 (37–72%) was blunted by EtOH at 30 min, 4 h, and 12 h. Phosphorylation of 4E-BP1 Ser65 was also attenuated by EtOH (61%) at 4 h. Conversely, phosphorylation of extracellular signal-regulated kinase Thr202/Tyr204 was increased by stimulation in Control and EtOH mice at 30 min but only in Control at 4 h. Our data indicate that acute EtOH intoxication suppresses muscle protein synthesis for at least 12 h and greatly impairs contraction-induced changes in synthesis and mTOR signaling.


Sign in / Sign up

Export Citation Format

Share Document