scholarly journals Differential Blocking Effects of the Acetaldehyde-derived DNA Lesion N2-Ethyl-2′-deoxyguanosine on Transcription by Multisubunit and Single Subunit RNA Polymerases

2008 ◽  
Vol 283 (41) ◽  
pp. 27820-27828 ◽  
Author(s):  
Tsu-Fan Cheng ◽  
Xiaopeng Hu ◽  
Averell Gnatt ◽  
Philip J. Brooks
1995 ◽  
Vol 15 (12) ◽  
pp. 6729-6735 ◽  
Author(s):  
J Liu ◽  
W Zhou ◽  
P W Doetsch

Dihydrouracil (DHU) is a major base damage product formed from cytosine following exposure of DNA to ionizing radiation under anoxic conditions. To gain insight into the DNA lesion structural requirements for RNA polymerase arrest or bypass at various DNA damages located on the transcribed strand during elongation, DHU was placed onto promoter-containing DNA templates 20 nucleotides downstream from the transcription start site. In vitro, single-round transcription experiments carried out with SP6 and T7 RNA polymerases revealed that following a brief pause at the DHU site, both enzymes efficiently bypass this lesion with subsequent rapid generation of full-length runoff transcripts. Direct sequence analysis of these transcripts indicated that both RNA polymerases insert primarily adenine opposite to the DHU site, resulting in a G-to-A transition mutation in the lesion bypass product. Such bypass and insertion events at DHU sites (or other types of DNA damages), if they occur in vivo, have a number of important implications for both the repair of such lesions and the DNA damage-induced production of mutant proteins at the level of transcription (transcriptional mutagenesis).


2017 ◽  
Vol 292 (44) ◽  
pp. 18145-18160 ◽  
Author(s):  
Shemaila Sultana ◽  
Mihai Solotchi ◽  
Aparna Ramachandran ◽  
Smita S. Patel

1997 ◽  
Vol 45 (6) ◽  
pp. 671-681 ◽  
Author(s):  
Nicolas Cermakian ◽  
Tatsuya M. Ikeda ◽  
Pedro Miramontes ◽  
B. Franz Lang ◽  
Michael W. Gray ◽  
...  

Biochemistry ◽  
2012 ◽  
Vol 51 (18) ◽  
pp. 3901-3910 ◽  
Author(s):  
Gilberto Velazquez ◽  
Qing Guo ◽  
Liping Wang ◽  
Luis G. Brieba ◽  
Rui Sousa

2019 ◽  
Author(s):  
Ramesh Padmanabhan ◽  
Dennis Miller

1.1AbstractRNA polymerases (RNAPs) differ from other polymerases in that they can bind promoter sequences and initiate de novo transcription. Promoter recognition requires the presence of specific DNA binding domains in the polymerase. The structure and mechanistic aspects of transcription by the bacteriophage T7 RNA polymerase (T7 RNAP) are well characterized. This single subunit RNAP belongs to the family of RNAPs which also includes the T3, SP6 and mitochondrial RNAPs. High specificity for its promoter, the requirement of no additional transcription factors, and high fidelity of initiation from a specific site in the promoter makes it the polymerase of choice to study the mechanistic aspects of transcription. The structure and function of the catalytic domains of this family of polymerases are highly conserved suggesting a common mechanism underlying transcription. Although the two groups of single subunit RNAPs, mitochondrial and bacteriophage, have remarkable structural conservation, they recognize quite dissimilar promoters. Specifically, the bacteriophage promoters recognize a 23 nucleotide promoter extending from −17 to + 6 nucleotides relative to the site of transcription initiation, while the well characterized promoter recognized by the yeast mitochondrial RNAP is nine nucleotides in length extending from −8 to +1 relative to the site of transcription initiation. Promoters recognized by the bacteriophage RNAPs are also well characterized with distinct functional domains involved in promoter recognition and transcription initiation. Thorough mutational studies have been conducted by altering individual base-pairs within these domains. Here we describe experiments to determine whether the prototype bacteriophage RNAP is able to recognize and initiate at truncated promoters similar to mitochondrial promoters. Using an in vitro oligonucleotide transcriptional system, we have assayed transcription initiation activity by T7 RNAP. When a complete or almost complete (20 to 16 nucleotide) double stranded T7 RNAP promoter sequence is present, small RNA’s are produced through template-independent and promoter-dependent stuttering corresponding to abortive initiation, and this effect was lost with a scrambled promoter sequence. When partial double stranded promoter sequences (10 to 12 nucleotides) are supplied, template dependent de novo initiation of RNA occurs at a site different from the canonical +1-initiation site. The site of transcription initiation is determined by a recessed 3’ end based paired to the template strand of DNA rather than relative to the partial promoter sequence. Understanding the mechanism underlying this observation helps us to understand the role of the elements in the T7 promoter, and provides insights into the promoter evolution of the single-subunit RNAPs.


Sign in / Sign up

Export Citation Format

Share Document