In vitromicrobial growth and rumen fermentation of different substrates as affected by the addition of disodium malate

2005 ◽  
Vol 81 (1) ◽  
pp. 31-38 ◽  
Author(s):  
M. L. Tejido ◽  
M. J. Ranilla ◽  
R. García-Martínez ◽  
M. D. Carro

AbstractThe effects of two concentrations of disodium malate on thein vitrofermentation of three substrates differing in their forage: concentrate ratio (0·8: 0·2, 0·5: 0·5 and 0·2: 0·8; g/g dry matter; low-, medium- and high-concentrate substrates, respectively) by rumen micro-organisms were studied using batch cultures. Rumen contents were collected from four Merino sheep offered lucerne hay ad libitum and supplemented daily with 400 g concentrate. Disodium malate was added to the incubation bottles to achieve final concentrations of 0, 4 and 8 mmol/l malate and15N was used as a microbial marker. Gas production was measured at regular intervals from 0 to 120 h of incubation to study fermentation kinetics. When gas production values were corrected for gas released from added malate, no effects (P> 0·05) of malate were detected for any of the estimated gas production parameters. In 17-h incubations, the final pH and total volatile fatty acid (VFA) production were increased (P< 0·001) by the addition of malate, but no changes (P> 0·05) were detected in the final amounts of ammonia-N and lactate. When net VFA productions were corrected for the amount of VFA produced from malate fermentation itself, adding malate did not affect (P> 0·05) the production of acetate, propionate and total VFA. Malate reduced methane (CH4) production by proportionately 0·058, 0·013 and 0·054 for the low-, medium- and high-concentrate substrates, respectively. Adding malate to batch cultures increased (P< 0·01) rumen microbial growth (mean values of 16·6, 18·3 and 18·4 mg of microbial N for malate at 0, 4 and 8 mmol/l, respectively), but did not affect (P> 0·05) its efficiency of growth (55·5, 56·7 and 54·3 mg of microbial N per g of organic matter apparently fermented for malate at 0, 4 and 8 mmol/l, respectively). There were no interactions (P> 0·05) malate × substrate for any of the measured variables, and no differences (P> 0·05) in pH, CH4production and microbial growth were found between malate at 4 and 8 mmol/l. The results indicate that malate had a beneficial effect on in vitro rumen fermentation of substrates by increasing VFA production and microbial growth, and that only subtle differences in the effects of malate were observed between substrates. Most of the observed effects, however, seem to be due to fermentation of malate itself.

2005 ◽  
Vol 94 (1) ◽  
pp. 71-77 ◽  
Author(s):  
R. García-Martínez ◽  
M. J. Ranilla ◽  
M. L. Tejido ◽  
M. D. Carro

The effects of disodium fumarate on microbial growth, CH4production and fermentation of three diets differing in their forage content (800, 500 and 200 g/kg DM) by rumen micro-organismsin vitrowere studied using batch cultures. Rumen contents were collected from four Merino sheep. Disodium fumarate was added to the incubation bottles to achieve final concentrations of 0, 4 and 8 mm-fumarate, and15N was used as a microbial marker. Gas production was measured at regular intervals from 0 to 120 h of incubation. Fumarate did not affect (P>0·05) any of the measured gas production parameters. In 17 h incubations, the final pH and the production of acetate and propionate were increased linearly (P<0·001) by the addition of fumarate. Fumarate tended to increase (P=0·076) the organic matter disappearance of the diets and to decrease (P=0·079) the amount of NH3-N in the cultures. Adding fumarate to batch cultures tended (P=0·099) to decrease CH4production, the mean values of the decrease being 5·4 %, 2·9 % and 3·8 % for the high-, medium- and low-forage diet, respectively. Fumarate tended to increase (P=0·082) rumen microbial growth for the high-forage diet, but no differences (P>0·05) were observed for the other two diets. These results indicate that the effects of fumarate on rumen fermentation depend on the nature of the incubated substrate, the high-forage diet showing the greatest response.


2013 ◽  
Vol 152 (4) ◽  
pp. 686-696 ◽  
Author(s):  
H. J. YANG ◽  
H. ZHUANG ◽  
X. K. MENG ◽  
D. F. ZHANG ◽  
B. H. CAO

SUMMARYThe effects of melamine on gas production (GP) kinetics, methane (CH4) production and fermentation of diets differing in forage content (low-forage (LF) diet: 200 g/kg and high-forage (HF) diet: 800 g/kg) by rumen micro-organismsin vitrowere studied using batch cultures. Rumen contents were collected from three Simmental×Luxi crossbred beef cattle. Melamine was added to the incubation bottles to achieve final concentration of 0 (control), 2, 6, 18, 54, 162 and 484 mg/kg of each diet. Cumulative GP was continuously measured in an automated gas recording instrument during 72 h of incubation, while fermentation gas end-products were collected to determine molar proportions of carbon dioxide (CO2), CH4and hydrogen gas (H2) in manually operated batch cultures. Differences in GP kinetics and fermentation gases were observed in response to the nature of the diets incubated. Although melamine addition did not affect GP kinetics and fermentation gas pattern compared to the control, the increase of melamine addition stimulated the yield of CH4by decreasing CO2, especially during the fermentation of the HF diet. The concentrations of ammonia nitrogen (N), amino acid N and microbial N in culture fluids were greater in the fermentation of LF- than HF diets, and these concentrations were increased by the increase of melamine addition after 72-h fermentation. The concentrations of total volatile fatty acids (VFA) were greater in HF than LF diets. The addition of melamine decreased total VFA concentrations and this response was greater in HF than LF diet fermentations. Melamine addition did not affect molar proportions of acetate, butyrate, propionate and valerate compared with the control; however, branched-chain VFA production, which was lower in the HF than the LF diet, was increased by the melamine addition, especially in the HF diet fermentation. The ratio of non-glucogenic to glucogenic acids was lower in the HF than the LF diet, but it was not affected by melamine addition. In brief, the greater reduction in the rate and extent of rumen fermentation found for the HF diet in comparison with the LF diet suggested that rumen fermentation rate and extentin vitrodepended mainly on the nature of the incubated substrate, and that they could be further inhibited by the increase of melamine addition.


2014 ◽  
Vol 153 (2) ◽  
pp. 343-352 ◽  
Author(s):  
E. C. SOTO ◽  
H. KHELIL ◽  
M. D. CARRO ◽  
D. R. YAÑEZ-RUIZ ◽  
E. MOLINA-ALCAIDE

SUMMARYTwo in vitro experiments were conducted to analyse the effects of replacing dietary barley grain with wastes of tomato and cucumber fruits and a 1 : 1 tomato : cucumber mixture on rumen fermentation characteristics and microbial abundance. The control (CON) substrate contained 250 g/kg of barley grain on a dry matter (DM) basis, and another 15 substrates were formulated by replacing 50, 100, 150, 200 or 250 g of barley grain/kg with the same amount (DM basis) of tomato or cucumber fruits or 1 : 1 tomato : cucumber mixture. In Expt 1, all substrates were incubated in batch cultures with rumen micro-organisms from goats for 24 h. Increasing amounts of tomato, cucumber and the mixture of both fruits in the substrate increased final pH and gas production, without changes in final ammonia-nitrogen (NH3-N) concentrations, substrate degradability and total volatile fatty acid (VFA) production, indicating that there were no detrimental effects of any waste fruits on rumen fermentation. Therefore, in Expt 2 the substrates including 250 g of waste fruits (T250, C250 and M250 for tomato, cucumber and the mixture of both fruits, respectively) and the CON substrate were incubated in single-flow continuous-culture fermenters for 8 days. Total VFA production did not differ among substrates, but there were differences in VFA profile. Molar proportions of propionate, isobutyrate and isovalerate were lower and acetate : propionate ratio was greater for T250 compared with CON substrate. Fermentation of substrates containing cucumber (C250 and M250) resulted in lower proportions of acetate, isobutyrate and isovalerate and acetate : propionate ratio, but greater butyrate proportions than the CON substrate. Carbohydrate degradability and microbial N synthesis tended to be lower for substrates containing cucumber than for the CON substrate, but there were no differences between CON and T250 substrates. Abundance of total bacteria, Fibrobacter succinogenes and Ruminococcus flavefaciens, fungi, methanogenic archaea and protozoa were similar in fermenters fed T250 and CON substrates, but fermenters fed C250 and M250 substrates had lower abundances of R. flavefaciens, fungi and protozoa than those fed the CON substrate. Results indicated that tomato fruits could replace dietary barley grain up to 250 g/kg of substrate DM without noticeable effects on rumen fermentation and microbial populations, but the inclusion of cucumber fruits at 250 g/kg of substrate DM negatively affected some microbial populations as it tended to reduce microbial N synthesis and changed the VFA profile. More studies are needed to identify the dietary inclusion level of cucumber which produces no detrimental effects on rumen fermentation and microbial growth.


Agriculture ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1205
Author(s):  
Musen Wang ◽  
Fujin Zhang ◽  
Xinxin Zhang ◽  
Ying Yun ◽  
Lei Wang ◽  
...  

The objective of this work was to evaluate the pH, chemical composition, minerals, vitamins, and in vitro rumen fermentation characteristics of silage prepared with lucerne, sweet maize stalk (MS), and their mixtures. Freshly chopped lucerne and MS were combined in ratios of 100:0 (M0, control), 80:20 (M20), 60:40 (M40), 40:60 (M60), 20:80 (M80), and 0:100 (M100) on a fresh matter basis. Each treatment was prepared in triplicate, and a total of eighteen silos were fermented for 65 days. After 65 days of fermentation, the pH values in M0, M20, M40, M60, M80, and M100 silages were 5.47, 4.84, 4.23, 4.13, 3.79, and 3.61, respectively. As the MS proportion in the mixtures increased, silage K, Ca, P, Na, Fe, and Cu concentrations linearly decreased (p < 0.001) and so did vitamins B5 and K1 and α-tocopherol. In vitro rumen dry matter and organic matter degradability, pH, ammonia, total volatile fatty acid, and gas production linearly decreased (p < 0.01), while neutral detergent fiber concentration linearly increased (p < 0.001), with increasing proportion of MS. The in vitro dry matter and organic matter degradability rapidly decreased when the MS percentage was ≥60%. In conclusion, the M40 silage is the most suitable for livestock utilization in local forage production considering the balance of silage pH, nutritional quality, and in vitro ruminal fermentation characteristics.


2019 ◽  
Vol 97 (Supplement_3) ◽  
pp. 393-394
Author(s):  
Adebayo O Oni ◽  
Bobby-Joe Ogadu ◽  
Azeez O Yusuf ◽  
A Adebowale ◽  
Oluwakemi Oni ◽  
...  

Abstract Recently, bioactive component of plant and plant parts have been used as rumen modifier to reduce methane gas production in ruminant livestock so as to reduce their contribution to the implicated greenhouse effect. This study therefore, evaluated the potential of Siam weed (Chromolaena odorata) leaves as a modifier of rumen fermentation in West African dwarf bucks. Fresh C. odorata leaves were harvested, air dried (3 weeks), milled using a 2mm sieve size and bagged for both proximate and phytochemical analysis. Concentrate diets were formulated with C. odorata leaf meal included in the diet at 0, 2, 4 and 6% of the whole diet. Rumen fluids were collected from West African dwarf (WAD) bucks (averaged 25kg) using suction tube and randomly allotted to the 4 experimental diets in a Completely Randomized Design. Incubation of inoculums was done for 96hrs with 12 replicates per treatment in a single run. Data obtained were analyzed using a One-way Analysis of Variance and means compared using Tukey’s Test. Results indicated that C. odorata had 969.0mg/kg dry matter, 175.1mg/kg crude protein, 204.3mg/kg crude fibre, 521.6mg/kg nitrogen free extract, 19.9 mg/kg saponin, 25.7 mg/kg tannin, 10.8mg/kg flavonoid and 12.6 mg/kg alkaloid. The addition of 2 and 4% C. odorata to the diets resulted in increased (P &lt; 0.05) in vitro gas production while C. odorata at 2 % reduced (P &lt; 0.05) the methane gas (%) estimate. In vitro organic and dry matter digestibilities, total digestible substrates and short chain fatty acids were increased (P &lt; 0.05) with C. odorata addition to the diets. This study concluded that the use of C. odorata as an additive at 2 and 4% inclusion increased total gas output; however, 2% inclusion will be beneficial as it reduced the methane output while maintaining higher gas production and digestibility.


2018 ◽  
Vol 53 (4) ◽  
pp. 504-513
Author(s):  
Rafaela Scalise Xavier de Freitas ◽  
Delci de Deus Nepomuceno ◽  
Elisa Cristina Modesto ◽  
Tatiana Pires Pereira ◽  
João Carlos de Carvalho Almeida ◽  
...  

Abstract: The objective of this work was to evaluate the effect of the addition of the methanolic extract of Urochloa humidicola at four different concentrations (0, 75, 150, and 250 g L-1) on the in vitro rumen fermentation of Urochloa brizantha. The following variables were evaluated by the in vitro gas production technique: kinetic parameters; rumen degradation of dry matter; and production and concentration of the methane and carbon dioxide gases and of the acetate, propionate, and butyrate short-chain fatty acids. The addition of the methanolic extract reduces the production of gases generated from the degradation of non-fibrous carbohydrates (fraction A) in 9.55, 6.67, and 13.33%, respectively, at the concentrations of 75, 150, and 250 g L-1, compared with the control group, but it negatively affects the degradation of the dry matter of U. brizantha at the concentrations of 150 and 250 g L-1. The extract shows negative quadratic effect on gas production during 12 and 24 hours of U. brizantha incubation. The extract of U. humidicola reduces methane production and increases short-chain fatty acid production at the concentrations of 75, 150, and 250 g L-1.


1992 ◽  
Vol 55 (1) ◽  
pp. 35-40 ◽  
Author(s):  
T. Mutsvangwa ◽  
I. E. Edwards ◽  
J. H. Topps ◽  
G. F. M. Paterson

AbstractThe effects of a barley beef diet without (control) and with a yeast culture (YC) on rumen fermentation, in vivo diet digestibility, nitrogen retention, live-weight gain and food intake were evaluated using 13 Limousin × British Friesian bulls per treatment. The YC was composed of the yeast species Saccharomyces cerevisiae and its growth medium dried in such a manner that it maintained its fermentative capacity. The addition of YC significantly increased the concentration of acetate (P < 0·05) while propionate concentration tended to be higher for bulls given YC (P > 0·05). The acetate: propionate ratio remained unchanged. Concentration of total volatile fatty acid (VFA) was significantly higher in YC bulls compared with control bulls (P < 0·05). The in vitro studies using the Menke gas test confirmed these findings. Mean in vitro gas production in bulls receiving YC was lower than that in the controls (P < 0·05) and methane production was significantly reduced by the addition of YC after 12h (P < 0·01). Ruminal ammonia concentrations were not affected by treatment but ruminal pH was significantly depressed by the addition of YC (P < 0·05).Apparent digestibility of dry matter, organic matter, crude protein and neutral-detergent fibre were unaffected by treatment but tended to be higher with the control diet. Nitrogen retention was not affected by the addition of YC and mean values for allantoin excretion and plasma urea were similar.In a 28-week feeding trial, dry-matter intake was significantly greater for bulls given YC (5·55 kg/day) than for control bulls (5·32 kg/day, P < 0·05) but average daily gain, 1·55 and 1·58 kg/day for control and YC respectively, and food conversion efficiency were not improved significantly by YC (P > 0·05).


2021 ◽  
Vol 51 (2) ◽  
pp. 271-279
Author(s):  
M.R. Kekana ◽  
D. Luseba ◽  
M.C. Muyu

Garlic contains secondary metabolites with antimicrobial properties that can alter nutrient digestibility and rumen fermentation, similar to other antimicrobial products. The objectives of the study were to evaluate the effects of garlic powder and garlic juice on in vitro nutrient digestibility, rumen fermentation, and gas production. The treatments consisted of control with no additives, garlic powder, and garlic juice at 0.5 ml and 1 ml. The digestibility of dry matter, crude protein and neutral detergent fibre were determined after 48 hours incubation. Rumen ammonia nitrogen and volatile fatty acids were determined at 12 hours and 24 hours incubation. The cumulative gas production was recorded periodically over 48 hours. The in vitro dry matter disappearance decreased with 1 ml of garlic juice compared with control. The crude protein degradability in garlic powder and garlic juice was lower than in control. Volatile fatty acids increased in all treatments. Individual volatile fatty acids were significantly different, especially propionate, whereas the acetate to propionate ratio was reduced by garlic juice, and ammonia nitrogen was reduced by garlic powder and 0.5 ml of garlic juice. The cumulative gas production increased significantly with both levels of garlic juice. The addition of garlic juice at 0.5 mL/100 ml could enhance the production of propionate, and reduce the acetate to propionate ratio, implying that the supply of hydrogen for methanogens was limited.


2018 ◽  
Vol 18 (1) ◽  
pp. 125-142
Author(s):  
Mina Kahvand ◽  
Mostafa Malecky

Abstract This study aimed at determining the chemical composition of sage essential oil (SEO) and yarrow essential oil (YEO), and investigate in vitro their impacts on gas production kinetics, ruminal digestibility and fermentation, and rumen methanogenesis at different dosages (0, 250, 500 and 750 mg L-1 for SEO; and 0, 250, 500, 750 and 1000 mg L−1 for YEO). Alpha-pinene and 1,8 cineol were two major constituents of both SEO and YEO. Both SEO and YEO had a linear and quadratic effect on asymptotic gas production (P<0.05). The gas production rate increased linearly with SEO and curve-linearly with YEO dosages (P<0.05). In vitro degradability of dry matter and organic matter decreased only by YEO. The partitioning factor (PF) and the microbial biomass (MB) decreased and increased linearly with YEO and SEO dosages, respectively (P<0.05). Total volatile fatty acids (VFA ) were not affected by SEO, but decreased in a linear and quadratic manner with YEO dosage (P<0.05). The VFA pattern was modified in a linear and quadratic manner by both SEO and YEO (P<0.05). Ammonia concentration increased linearly only with YEO increasing doses. The methane to total gas (TG) ratio decreased quadratically only by SEO with reductions of 6.7, 13 and 4.2% at the doses of 250, 500 and 750 mg L−1, respectively. These results revealed that SEO modifies the rumen fermentation positively towards producing more MB and less methane in the dose range of 0-750 mg L−1, however, YEO adversely affected the rumen fermentation at all the tested doses.


Sign in / Sign up

Export Citation Format

Share Document