scholarly journals Mitochondria1 uncoupling and the isodynamic equivalents of protein, fat and carbohydrate at the level of biochemical energy provision

1985 ◽  
Vol 53 (2) ◽  
pp. 381-389 ◽  
Author(s):  
Geoffrey Livesey

1. The effects of uncoupling of mitochondria1 oxidative phosphorylation on the efficiency of energy conservation during oxidation of amino acids, fatty acids, glycerol, glucose and 101 food proteins have been examined in order to compare how uncoupling at coupling site 1 affects energy yields compared with uncoupling at sites 2 + 3 and uncoupling by proton leakage. The effects of uncoupling by each mechanism on the isodynamic equivalents of carbohydrate, fat and protein at the level of cytoplasmic ATP yield have been estimated.2. Energy conservation during amino acid oxidation decreases relative to that for glucose as uncoupling by all three mechanisms increases. This effect is least when uncoupling is at site 1 and is associated with a fall in the isodynamicequivalent for protein: glucose of 4%maximally, and a fall in the cytoplasmic ATP yield for glucose of 25% (15–30% when accounting for uncertainty in the choice of proton stoichiometries).3. Variation in the efficiency of energy conservation for the different amino acids is large for both highly coupled and uncoupled mitochondria but the range of efficiencies for the oxidation of 101 food proteins is relatively small (less than 6% of the mean) for a tightly coupled system. This range increases absolutely (minimally fourfold) and relatively (minimally 44% of the mean value) with severely uncoupled mitochondria but is nearly constant (changes by less than 1% relative to the mean) within the probable physiologically relevant range of uncoupling in the whole body and in the full range of uncoupling at site 1. The rank order position of particular proteins within the range of values is found to change most for gelatin which is oxidized with least energy conservation in a severely (unphysiologically) uncoupled system and most efficiently in a fully coupled system when oxidation of protein is considered to be direct, i.e. not via gluconeogenesis.4. For medium- and long-chain fatty acids, uncoupling at site 1 elevates the efficiency of energy conservation relative to that for glucose (maximally 4%) whereas uncoupling by other mechanisms decreases this relative efficiency. The pattern of effects for short-chain fatty acids resembles that for the amino acids.5. The changes in the isodynamic equivalents of protein:glucose and of fat:glucose are small when uncoupling occurs at site I and tend to cancel for a mixed diet but are additive in the effect on food energy values when uncoupling is by the other mechanisms. Hence changes in the efficiency of oxidative energy coupling at site 1 in association with Luft's disease or dietary changes would result in effects which are of little true dietetic significance on the isodynamic equivalents of nutrients at the level of cytoplasmic ATP yield in vivo.

1993 ◽  
Vol 264 (6) ◽  
pp. R1065-R1070 ◽  
Author(s):  
D. M. Surina ◽  
W. Langhans ◽  
R. Pauli ◽  
C. Wenk

The influence of macronutrient content of a meal on postprandial fatty acid oxidation was investigated in 13 Caucasian males after consumption of a high-fat (HF) breakfast (33% carbohydrate, 52% fat, 15% protein) and after an equicaloric high-carbohydrate (HC) breakfast (78% carbohydrate, 6% fat, 15% protein). The HF breakfast contained short- and medium-chain fatty acids, as well as long-chain fatty acids. Respiratory quotient (RQ) and plasma beta-hydroxybutyrate (BHB) were measured during the 3 h after the meal as indicators of whole body substrate oxidation and hepatic fatty acid oxidation, respectively. Plasma levels of free fatty acids (FFA), triglycerides, glucose, insulin, and lactate were also determined because of their relationship to nutrient utilization. RQ was significantly lower and plasma BHB was higher after the HF breakfast than after the HC breakfast, implying that more fat is burned in general and specifically in the liver after an HF meal. As expected, plasma FFA and triglycerides were higher after the HF meal, and insulin and lactate were higher after the HC meal. In sum, oxidation of ingested fat occurred in response to a single HF meal.


1985 ◽  
Vol 249 (2) ◽  
pp. E175-E182
Author(s):  
B. Beaufrere ◽  
P. Tessari ◽  
M. Cattalini ◽  
J. Miles ◽  
M. W. Haymond

A potential effector of the protein-sparing adaptation to fasting could be the increased availability of endogenous long-chain fatty acids. Were this hypothesis correct, infusion of medium-chain triglycerides to increase the plasma concentration of medium-chain fatty acids might also result in protein sparing. However, in most in vitro studies in rat muscle, octanoate increases the oxidation of the essential amino acid leucine. Therefore leucine metabolism was assessed with infusions of [3H]leucine and a-[14C]ketoisocaproate ([14C]KIC) before and during an infusion of trioctanoin in conscious dogs. Plasma octanoate increased from less than 30 to 528 microM over the 3 h of infusion. Plasma leucine and KIC concentrations decreased by 65-70% (P less than 0.01) over the first 2 h of infusion. Leucine oxidation, estimated from the expired 14CO2 and the plasma [14C]KIC specific activity, as well as from an open two-pool model, decreased. By use of these isotope models, the rates of leucine coming from and going to protein decreased (P less than 0.05 to P less than 0.01). Interconversion of leucine and KIC estimated from the open two-pool model decreased by 80% (P less than 0.01). These changes were accompanied by a 36% decrease in the plasma concentration of total plasma amino acids. Within the confines of the isotope models employed, these data are consistent with the hypothesis that increased fatty acid oxidation decreases protein turnover and may spare essential amino acids.


2020 ◽  
Vol 21 (8) ◽  
pp. 785-798 ◽  
Author(s):  
Abedin Abdallah ◽  
Evera Elemba ◽  
Qingzhen Zhong ◽  
Zewei Sun

The gastrointestinal tract (GIT) of humans and animals is host to a complex community of different microorganisms whose activities significantly influence host nutrition and health through enhanced metabolic capabilities, protection against pathogens, and regulation of the gastrointestinal development and immune system. New molecular technologies and concepts have revealed distinct interactions between the gut microbiota and dietary amino acids (AAs) especially in relation to AA metabolism and utilization in resident bacteria in the digestive tract, and these interactions may play significant roles in host nutrition and health as well as the efficiency of dietary AA supplementation. After the protein is digested and AAs and peptides are absorbed in the small intestine, significant levels of endogenous and exogenous nitrogenous compounds enter the large intestine through the ileocaecal junction. Once they move in the colonic lumen, these compounds are not markedly absorbed by the large intestinal mucosa, but undergo intense proteolysis by colonic microbiota leading to the release of peptides and AAs and result in the production of numerous bacterial metabolites such as ammonia, amines, short-chain fatty acids (SCFAs), branched-chain fatty acids (BCFAs), hydrogen sulfide, organic acids, and phenols. These metabolites influence various signaling pathways in epithelial cells, regulate the mucosal immune system in the host, and modulate gene expression of bacteria which results in the synthesis of enzymes associated with AA metabolism. This review aims to summarize the current literature relating to how the interactions between dietary amino acids and gut microbiota may promote host nutrition and health.


2017 ◽  
Vol 7 (3) ◽  
pp. 168 ◽  
Author(s):  
Morakot Sroyraya ◽  
Peter J. Hanna ◽  
Tanapan Siangcham ◽  
Ruchanok Tinikul ◽  
Prapaporn Jattujan ◽  
...  

Background: Holothuria scabra is one of the most commercially important species found in the Pacific region. The sea cucumber extracts have been widely reported to have beneficial health effects. The aim of this study was to determine the nutritional compositions of H. scabra, and compare its important nutritional contents with that of other species.Methods: The sea cucumbers were dissected, sliced into small pieces, and then freeze-dried. The nutritional compositions, including proximate composition, amino acids, fatty acids, collagen, GABA, Vitamin A, C, and E of the whole body and body wall of H. scabra, were analyzed.Results: H. scabra contained a high quantity of protein (22.50% in whole body and 55.18% in body wall) and very low lipids (1.55% in whole body and 1.02% in body wall). The three most abundant amino acids found in both the whole body and body wall were glycine, glutamic acid, and proline. The main fatty acids found in the whole body were stearic acid and nervonic acid, and in the body wall were arachidonic acid and stearic acid. The whole body and body wall also contained high levels of essential amino acids, essential fatty acids, and collagen, in addition to moderate amounts of vitamin E and low amounts of GABA and vitamin C.Conclusions: The sea cucumber, H. scabra, contained high quantity of protein and very low lipid. It contained high essential amino acids, essential fatty acids, nervonic and arachidonic acids, and collagen, which also contained GABA, vitamin C, and vitamin E.Keywords: sea cucumber; Holothuria scabra; nutrition components; functional food            


1982 ◽  
Vol 152 (1) ◽  
pp. 246-254
Author(s):  
Caroline S. Harwood ◽  
Ercole Canale-Parola

Spirochete MA-2, which is anaerobic, ferments glucose, forming acetate as a major product. The spirochete also ferments (but does not utilize as growth substrates) small amounts of l -leucine, l -isoleucine, and l -valine, forming the branched-chain fatty acids isovalerate, 2-methylbutyrate, and isobutyrate, respectively, as end products. Energy generated through the fermentation of these amino acids is utilized to prolong cell survival under conditions of growth substrate starvation. A branched-chain fatty acid kinase and two acetate kinase isozymes were resolved from spirochete MA-2 cell extracts. Kinase activity was followed by measuring the formation of acyl phosphate from fatty acid and ATP. The branched-chain fatty acid kinase was active with isobutyrate, 2-methylbutyrate, isovalerate, butyrate, valerate, or propionate as a substrate but not with acetate as a substrate. The acetate kinase isozymes were active with acetate and propionate as substrates but not with longer-chain fatty acids as substrates. The acetate kinase isozymes and the branched-chain fatty acid kinase differed in nucleoside triphosphate and cation specificities. Each acetate kinase isozyme had an apparent molecular weight of approximately 125,000, whereas the branched-chain fatty acid kinase had a molecular weight of approximately 76,000. These results show that spirochete MA-2 synthesizes a branched-chain fatty acid kinase specific for leucine, isoleucine, and valine fermentation. It is likely that a phosphate branched-chain amino acids is also synthesized by spirochete MA-2. Thus, in spirochete MA-2, physiological mechanisms have evolved which serve specifically to generate maintenance energy from branched-chain amino acids.


2008 ◽  
Vol 50 (5) ◽  
pp. 348-352 ◽  
Author(s):  
Kyoko Inoue ◽  
Yasuyuki Suzuki ◽  
Shigehiro Yajima ◽  
Nobuyuki Shimozawa ◽  
Shunji Tomatsu ◽  
...  

1993 ◽  
Vol 265 (1) ◽  
pp. E31-E35 ◽  
Author(s):  
P. F. Chien ◽  
K. Smith ◽  
P. W. Watt ◽  
C. M. Scrimgeour ◽  
D. J. Taylor ◽  
...  

Before elective cesarean delivery (4 h), we infused L-[1-13C]leucine and L-[15N]phenylalanine into the maternal circulation and measured enrichment and concentration of amino acids and carbon dioxide in cord blood of six normal human fetuses at delivery. There were net fetal uptakes of leucine (2.22 +/- 0.29 mumol.kg-1.min-1) and phenylalanine (0.80 +/- 0.11 mumol.kg-1.min-1) with net outputs of CO2 (6.11 +/- 1.12 ml.kg-1.min-1) and the transamination product of leucine, alpha-ketoisocaproate (1.04 +/- 0.32 mumol.kg-1.min-1). Fetal amino acid oxidation accounted for a substantial proportion of the flux from the mother (leucine, 0.36 +/- 0.09 mumol.kg-1.min-1 and phenylalanine, 0.18 +/- 0.04 mumol.kg-1.min-1). Fetal whole body accretion of leucine carbon (0.82 +/- 0.21 mumol.kg-1.min-1) was 69% of the umbilical uptake, and that of phenylalanine (0.62 +/- 0.08 mumol.kg-1.min-1) was 78%. Fetal whole body protein synthesis was approximately 13 g.kg-1.day-1, i.e., much faster than in adults but similar to that in the newborn. Net protein accretion was 2-4 g.kg-1.day-1. The placental supply of leucine and phenylalanine exceeds the fetal demand for protein synthesis by only a small amount, suggesting that the safety margin of placental transfer may be small for these amino acids. The results suggest that the method could be applied safely to studies of fetal growth retardation.


Sign in / Sign up

Export Citation Format

Share Document