scholarly journals Excretion of purine derivatives by ruminants: recycling of allantoin into the rumen via saliva and its fate in the gut

1990 ◽  
Vol 63 (2) ◽  
pp. 197-205 ◽  
Author(s):  
X. B. Chen ◽  
F. D. DeB. Hovell ◽  
E. R. ØRskov

The saliva of sheep was shown to contain significant concentrations of uric acid (16 (sd) 4.5) μmol/l) and allantoin (120 (sd 16.4) μmol/l), sufficient to recycle purine derivatives equivalent to about 0.10 of the normal urinary excretion. When allantoin was incubated in vitro in rumen fluid, it was degraded at a rate sufficient to ensure complete destruction of recycled allantoin. In a series of experiments in which allantoin was infused into the rumen of sheep fed normally, or into the rumen or abomasum of sheep and the rumen of cattle completely nourished by intragastric infusion of volatile fatty acids and casein, no additional allantoin was recovered in the urine. These losses were probably due to the degradation of allantoin by micro-organisms associated with the digestive tract. It is concluded that all allantoin and uric acid recycled to the rumen via saliva will be similarly degraded. Therefore, the use of urinary excretion of purine derivatives as an estimator of the rumen microbial biomass available to ruminants will need to be corrected for such losses.

2014 ◽  
Vol 59 (No. 10) ◽  
pp. 450-459 ◽  
Author(s):  
M. Gunal ◽  
A. Ishlak ◽  
A.A. AbuGhazaleh ◽  
W. Khattab

The effects of adding essential oils (EO) at different levels (125, 250, 500 mg/l) on rumen fermentation and biohydrogenation were examined in a rumen batch culture study. Treatments were: control without EO (CON), control with anise oil (ANO), cedar wood oil (CWO), cinnamon oil (CNO), eucalyptus oil (EUO), and tea tree oil (TEO). Essential oils, each dissolved in 1 ml of ethanol, were added to the culture flask containing 40 ml of buffer solution, 2 ml of reduction solution, 10 ml of rumen fluid, 25 mg of soybean oil, and 0.5 g of the diet. After 24 h of incubation in a water batch at 39°C, three samples were collected from each flask and analyzed for ammonia-N, volatile fatty acids (VFA), and fatty acids (FA). Expect for CNO, the proportions of acetate, propionate, and acetate to propionate ratios were not affected (P > 0.05) by EO addition. Addition of CWO, CNO, and TEO reduced total VFA concentrations (P < 0.05) regardless of dose level. The ammonia-N concentration was greater in cultures incubated with EO regardless of dose level. Compared with the CON, the concentrations of C18:0 and trans C18:1 were reduced (P < 0.05) with EO addition regardless of dose level. Compared with the CON, the concentration of linoleic acid was greater (P < 0.05) when EO were added at 500 mg/l. EO tested in this study had no effects on VFA profile but significantly reduced the formation of biohydrogenation products (C18:0 and trans C18:1).


2019 ◽  
Vol 64 (No. 8) ◽  
pp. 352-360
Author(s):  
Jiu Yuan ◽  
Xinjie Wan

The associative effects (AE) between concentrate (C), peanut shell (P) and alfalfa (A) were investigated by means of an automated gas production (GP) system. The C, P and A were incubated alone or as 40 : 60 : 0, 40 : 45 : 15, 40 : 30 : 30, 40 : 15 : 45, 40 : 0 : 60 and 30 : 70 : 0, 30 : 55 : 15, 30 : 40 : 30, 30 : 25 : 45, 30 : 10 : 60, 30 : 0 : 70 mixtures where the C : roughage (R) ratios were 40 : 60 and 30 : 70. Samples (0.2000 ± 0.0010 g) of single feeds or mixtures were incubated for 96 h in individual bottles (100 ml) with 30 ml of buffered rumen fluid. GP parameters were analysed using a single exponential equation. After incubation, the residues were used to determine pH, dry matter digestibility (DMD), organic matter digestibility (OMD), volatile fatty acids (VFA) and ammonia nitrogen (NH<sub>3</sub>-N) of the incubation fluid, and their single factor AE indices (SFAEI) and multiple-factors AE indices (MFAEI) were determined. The results showed that group of 30 peanut shell had higher SFAEI of GP<sub>48 h</sub>, DMD, OMD and total volatile fatty acids (p &lt; 0.05) and MFAEI (p &lt; 0.05) than groups 60, 45 and 0 when C : R was 40 : 60. The group of 10 peanut shell showed higher SFAEI of GP<sub>48 h</sub>, DMD and OMD (p &lt; 0.05) than groups 70, 55 and 40 and MFAEI (p &lt; 0.01) when C : R was 30 : 70. It is concluded that optimal SFAEI and MFAEI were obtained when the C : P : A ratios were 40 : 30 : 30 and 30 : 10 : 60.


2008 ◽  
Vol 102 (1) ◽  
pp. 82-92 ◽  
Author(s):  
Valentina Vasta ◽  
Harinder P. S. Makkar ◽  
Marcello Mele ◽  
Alessandro Priolo

The aim of the present work was to study the effects of tannins from carob (CT;Ceratonia siliqua), acacia leaves (AT;Acacia cyanophylla) and quebracho (QT;Schinopsis lorentzii) on ruminal biohydrogenationin vitro.The tannins extracted from CT, AT and QT were incubated for 12 h in glass syringes in cow buffered ruminal fluid (BRF) with hay or hay plus concentrate as a substrate. Within each feed, three concentrations of tannins were used (0·0, 0·6 and 1·0 mg/ml BRF). The branched-chain volatile fatty acids, the branched-chain fatty acids and the microbial protein concentration were reduced (P < 0·05) by tannins. In the tannin-containing fermenters, vaccenic acid was accumulated (+23 %,P < 0·01) while stearic acid was reduced ( − 16 %,P < 0·0005). The concentration of total conjugated linoleic acid (CLA) isomers in the BRF was not affected by tannins. The assay on linoleic acid isomerase (LA-I) showed that the enzyme activity (nmol CLA produced/min per mg protein) was unaffected by the inclusion of tannins in the fermenters. However, the CLA produced by LA-I (nmol/ml per min) was lower in the presence of tannins. These results suggest that tannins reduce ruminal biohydrogenation through the inhibition of the activity of ruminal micro-organisms.


1976 ◽  
Vol 36 (2) ◽  
pp. 311-315 ◽  
Author(s):  
J. W. Czerkawski

1. A procedure is described for using pivalic acid as an inert reference substance in determination of changes in concentrations of volatile fatty acids (VFA).2. Pivalic acid in concentrations of up to 80 mmol/l had no effect on production of methane or VFA by rumen contents.3. Pivalic acid was inert during incubation with rumen contents from sheep given different diets and with samples taken at different times with respect to feeding.


2021 ◽  
Vol 5 (1) ◽  
pp. 8-12
Author(s):  
Marselinus Hambakodu ◽  
Elvis Pati Ranja ◽  
Made Adi Sudarma

This study aims to determine the value of volatile fatty acids (VFA) and ammonia (NH3) of natural grass in grazing fields in vitro. The study used a direct survey method in the field. Natural grass was tested in vitro using Bali cattle rumen fluid. The data obtained were analyzed using descriptive analysis based on the mean and standard deviation. Natural grass consisted of Heteropogon insignis, Bracharia decumbens, Bothriochloa ischaemum. The measurement of the value of VFA uses steam distillation, while the method of measuring the value of NH3 uses Conway micro diffusion. The results showed that Bracharia decumbens grass had a total VFA value of 74.48 mM and an NH3 value of 8.50 mM which was higher than Heteropogon insignis grass (total VFA 65.79 mM and NH3 6.67 mM), and Bothriochloa ischaemum grass (total VFA 60.64 mM and NH3 5.34 mM). The conclusion of this study was based on the value of VFA and NH3, Bracharia decumbens grass was a natural grass that may be cultivated for ruminants.


2018 ◽  
Vol 69 (8) ◽  
pp. 797 ◽  
Author(s):  
Sophie Vandermeulen ◽  
Sultan Singh ◽  
Carlos Alberto Ramírez-Restrepo ◽  
Robert D. Kinley ◽  
Christopher P. Gardiner ◽  
...  

Three species of Desmanthus adapted to the heavy clay soils of northern Australia were studied to determine their nutritive value and effects on in vitro fermentation with rumen fluid, compared with Rhodes grass (Chloris gayana) hay. Leaves and stems of D. leptophyllus cv. JCU 1, D. virgatus cv. JCU 2 and D. bicornutus cv. JCU 4 were collected in summer, winter and spring of 2014 and analysed for chemical composition. Apparent digestibility as in vitro organic matter digestibility (IVD-OM) and fermentation parameters including methane (CH4) production were measured during 72-h fermentations using rumen fluid from steer donors grazing tropical grasses and legumes. Desmanthus bicornutus was on average more digestible than both D. leptophyllus and D. virgatus at 24, 48 and 72 h of incubation. This species also demonstrated an anti-methanogenic potential, in particular when harvested in summer with a reduction in CH4 production of 26% compared with Rhodes grass hay after 72 h of incubation. At this time point, D. leptophyllus produced higher volatile fatty acids (VFA per g of organic matter fermented) compared with the other forages. This legume also reduced the CH4 production up to 36% compared with the Rhodes grass hay reference. However, D. leptophyllus showed lower IVD-OM. Overall, Desmanthus species produced lower in vitro CH4 and lower volatile fatty acids concentration compared with the reference grass hay. These effects may be due to presence of secondary compounds such as hydrolysable tannins, condensed tannins and/or their combination in Desmanthus species. The IVD-OM was influenced by the season after 72 h of incubation; the digestibility was higher in plants collected in spring. This study suggests that contrasting fermentative profiles in Desmanthus cultivars may offer the opportunity to reduce the greenhouse gas contribution of the beef industry. The next step in demonstration of these promising in vitro results is demonstration of Desmanthus in vivo as proof of concept confirming the productivity and CH4 reduction ability of these legumes in the pastoral systems of northern Australia.


1961 ◽  
Vol 56 (1) ◽  
pp. 131-136 ◽  
Author(s):  
I. H. Bath ◽  
M. J. Head

1. A new technique has been used to study the fermentation of hemicellulose and α-cellulose in vitro. This involved the use of 14C-labelled carbohydrates fermented in the presence of normal herbage material in an artificial rumen.2. A method of growing grass in an atmosphere of 14CO2, its fractionation into hemicellulose and α-cellulose and the analysis of the labelled V.F.A. end-products are described.


2017 ◽  
Vol 57 (1) ◽  
pp. 129 ◽  
Author(s):  
A. K. S. Schulze ◽  
A. C. Storm ◽  
M. R. Weisbjerg ◽  
P. Nørgaard

The major microbial fermentation of forages and production of volatile fatty acids (VFA) takes place in the medial part of the rumen, whereas the absorption of VFA occurs through the rumen epithelium, for example the ventral sac. The objective was to study effects of forage neutral detergent fibre (NDF) content and time after feeding on the medial to ventral VFA and pH gradient as well as rumen motility in the rumen of heifers fed grass/clover silages. Four silages were harvested at different growth stages with NDF contents of 31–45% of DM and in vitro organic matter digestibilities of 75–82% and fed to four rumen-fistulated Jersey heifers at 90% of ad libitum level in a Latin square design, with half the ration fed at 0800 hours and 1530 hours. Rumen fluid was sampled hourly from 0730 hours to 1530 hours in the medial and ventral rumen, and analysed for pH and concentrations of VFA, L-lactic acid, and ammonia to assess ruminal chemical gradient. Reticular contractions were continuously recorded by a pressure transducer. Time relative to feeding affected rumen parameters as pH was generally lower and VFA content greater in medial compared with ventral rumen fluid. Greater NDF content of the silage caused lower VFA concentration and higher pH in the rumen mat, and therefore the gradient diminished at greater NDF content in the silages; an effect probably caused by reduced organic matter digestibility rather than digesta NDF properties. This study therefore suggests that VFA production decreased with greater NDF content of forages, whereas intra-ruminal equilibration increased.


1938 ◽  
Vol 28 (1) ◽  
pp. 43-63 ◽  
Author(s):  
H. E. Woodman ◽  
R. E. Evans

Further studies of the behaviour of cellulose-splitting bacteria in artificial media have been made in an attempt to account for the manner in which cellulose is utilized for fat production in the ruminant. The behaviour of thermophilic bacteria, with an optimum temperature of fermentation in the neighbourhood of 65°C, has been compared with that of the micro-organisms capable of fermenting at 37°C. In both cases the cultures were obtained from the rumen contents of sheep.By the addition of toluene at the “head” stage of fermentation, it was possible to demonstrate, both at 37 and 65°C., the production of small amounts of glucose during subsequent incubation. Glucose is clearly a primary breakdown product in the bacterial fermentation of cellulose.An investigation has been made of the nature of the volatile fatty acids produced by bacterial decomposition of shredded filter paper. No consistent differences from this standpoint were noted between the reactions as carried out at 37 and 65°C., but the nature and proportions of the acids varied considerably from culture to culture. In some cases acetic acid was produced almost exclusively, whilst in others the fatty acids consisted of butyric and formic acids, with but traces of acetic acid. The findings in this regard apparently afford no clue to the manner in which cellulose is used for fat production, since propionic acid, the only recognized fat-former among the lower normal fatty acids, was not detected.


Sign in / Sign up

Export Citation Format

Share Document