Young children’s spontaneous use of isometric and non-isometric symmetries: a study regarding their unprompted depictions of plant life

Author(s):  
José Domingo Villarroel ◽  
Maria Merino ◽  
Alvaro Antón
Keyword(s):  
Author(s):  
Geoffrey P. Chapman ◽  
Yin-Zheng Wang
Keyword(s):  

1945 ◽  
Vol 14 (24) ◽  
pp. 360-360
Author(s):  
B. L.
Keyword(s):  

Author(s):  
Mingjian Zhou ◽  
Heng Zhou ◽  
Jie Shen ◽  
Zhirong Zhang ◽  
Cecilia Gotor ◽  
...  

2021 ◽  
Author(s):  
Christian Körner
Keyword(s):  

Soil Systems ◽  
2021 ◽  
Vol 5 (3) ◽  
pp. 37
Author(s):  
Christopher Oze ◽  
Joshua Beisel ◽  
Edward Dabsys ◽  
Jacqueline Dall ◽  
Gretchen North ◽  
...  

Perchlorate (ClO4−) is globally enriched in Martian regolith at levels commonly toxic to plants. Consequently, perchlorate in Martian regolith presents an obstacle to developing agriculture on Mars. Here, we assess the effect of perchlorate at different concentrations on plant growth and germination, as well as metal release in a simulated Gusev Crater regolith and generic potting soil. The presence of perchlorate was uniformly detrimental to plant growth regardless of growing medium. Plants in potting soil were able to germinate in 1 wt.% perchlorate; however, these plants showed restricted growth and decreased leaf area and biomass. Some plants were able to germinate in regolith simulant without perchlorate; however, they showed reduced growth. In Martian regolith simulant, the presence of perchlorate prevented germination across all plant treatments. Soil column flow-through experiments of perchlorate-containing Martian regolith simulant and potting soil were unable to completely remove perchlorate despite its high solubility. Additionally, perchlorate present in the simulant increased metal/phosphorous release, which may also affect plant growth and biochemistry. Our results support that perchlorate may modify metal availability to such an extent that, even with the successful removal of perchlorate, Martian regolith may continue to be toxic to plant life. Overall, our study demonstrates that the presence of perchlorate in Martian regolith provides a significant challenge in its use as an agricultural substrate and that further steps, such as restricted metal availability and nutrient enrichment, are necessary to make it a viable growing substrate.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Kewei Cai ◽  
Huixin Liu ◽  
Song Chen ◽  
Yi Liu ◽  
Xiyang Zhao ◽  
...  

Abstract Background Class III peroxidases (POD) proteins are widely present in the plant kingdom that are involved in a broad range of physiological processes including stress responses and lignin polymerization throughout the plant life cycle. At present, POD genes have been studied in Arabidopsis, rice, poplar, maize and Chinese pear, but there are no reports on the identification and function of POD gene family in Betula pendula. Results We identified 90 nonredundant POD genes in Betula pendula. (designated BpPODs). According to phylogenetic relationships, these POD genes were classified into 12 groups. The BpPODs are distributed in different numbers on the 14 chromosomes, and some BpPODs were located sequentially in tandem on chromosomes. In addition, we analyzed the conserved domains of BpPOD proteins and found that they contain highly conserved motifs. We also investigated their expression patterns in different tissues, the results showed that some BpPODs might play an important role in xylem, leaf, root and flower. Furthermore, under low temperature conditions, some BpPODs showed different expression patterns at different times. Conclusions The research on the structure and function of the POD genes in Betula pendula plays a very important role in understanding the growth and development process and the molecular mechanism of stress resistance. These results lay the theoretical foundation for the genetic improvement of Betula pendula.


Sign in / Sign up

Export Citation Format

Share Document