Experimental investigation and CFD validation of countercurrent flow limitation (CCFL) in a large-diameter PWR hot-leg geometry

2016 ◽  
Vol 53 (5) ◽  
pp. 647-655 ◽  
Author(s):  
Suleiman Al Issa ◽  
Rafael Macian-Juan
1994 ◽  
Vol 152 (1-3) ◽  
pp. 379-388 ◽  
Author(s):  
S.M. Ghiaasiaan ◽  
R.E. Turk ◽  
S.I. Abdel-Khalik

2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Michio Murase ◽  
Koji Nishida ◽  
Toshihide Torige ◽  
Toshiya Takaki ◽  
Raito Goda ◽  
...  

The falling liquid flow rate under flooding conditions is limited at a square top end of a vertical pipe in the pressurizer surge line with the diameter of about 300 mm that consists of a vertical pipe, a vertical elbow, and a slightly inclined pipe with elbows. In this study, therefore, we evaluated effects of diameters on countercurrent flow limitation (CCFL) at the square top end in vertical pipes by using existing air-water data in the diameter range of D = 19-250 mm. As a result, we found that there was a strong relationship between the constant CK and the slope m in the Wallis-type correlation where the Kutateladze parameters were used for the dimensionless gas and liquid velocities. The constant CK and the slope m increased when the water level is increased in the upper tank h. CCFL at the square top end of the vertical pipes could be expressed by the Kutateladze parameters with CK = 1.53±0.11 and m = 0.97 for D ≥ 30 mm. The CK values were smaller for D = 19-25 mm than those for D ≥ 30 mm.


2020 ◽  
Vol 363 ◽  
pp. 110624
Author(s):  
Toshiya Takaki ◽  
Michio Murase ◽  
Koji Nishida ◽  
Toshihide Torige ◽  
Akio Tomiyama

Energies ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 5011
Author(s):  
Yanpeng Hao ◽  
Yifan Liao ◽  
Zhiqiang Kuang ◽  
Yijie Sun ◽  
Gaofeng Shang ◽  
...  

The discharges of water columns and droplets between the sheds make the leakage distance not effectively used, which is one of the main reasons for flashover of composite post insulators under heavy rainfall. To study the influence of shed parameters on surface rainwater characteristics, artificial rain tests were carried out on the large-diameter composite post insulators under the rainfall intensity of 2–15 mm/min. Lwc (the length of water columns at the edge of large sheds), Nwc (the number of water columns at the edge of large sheds), Nwde (the number of water droplets at the edge of large sheds) and Nwds (the number of water droplets in the space between two adjacent large sheds) were proposed as the parameters of surface rainwater characteristics. The influences of large shed spacing, large shed overhang and rod diameter on the parameters of surface rainwater characteristics under different rainfall intensities were analyzed. The experimental results show that, under the same rainfall intensity, with the rise in large shed spacing, large shed overhang or rod diameter, Lwc, Nwc, Nwde and Nwds all increase. Under different rainfall intensities, the trends of the parameters with the change in shed parameters are basically invariant; however, the change ranges of the parameters are different. The increases in the parameters with the rises in shed parameters and rainfall intensity are mainly attributed to the change in the rainfall on the insulator surface. The experimental results can provide references for the quantitative description of surface rainwater characteristics and the design of large-diameter composite post insulators for DC transmission systems.


Sign in / Sign up

Export Citation Format

Share Document