Spin–orbit density functional theory calculations for IX (X=F, Cl, Br and I) molecules

2005 ◽  
Vol 103 (15-16) ◽  
pp. 2117-2122 ◽  
Author(s):  
Woo Kyung Cho ◽  
Yoon Jeong Choi ◽  
Yoon Sup Lee *
2017 ◽  
Vol 5 (36) ◽  
pp. 9412-9420 ◽  
Author(s):  
Qun Yang ◽  
Shengli Zhang ◽  
Chunjian Tan ◽  
Huaiyu Ye ◽  
Xing Ming ◽  
...  

The enhanced photocatalytic mechanisms for the hybrid AlN/MX2 (MX2 = MoSe2, WS2, and WSe2) nanocomposites are systematically investigated by density-functional-theory calculations.


2006 ◽  
Vol 71 (11-12) ◽  
pp. 1525-1531 ◽  
Author(s):  
Wojciech Grochala

The enthalpy of four polymorphs of CaN has been scrutinized at 0 and 100 GPa using density functional theory calculations. It is shown that structures of diamagnetic calcium diazenide (Ca2N2) are preferred over the cubic ferromagnetic polymorph (CaN) postulated before, both at 0 and 100 GPa.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Chih-Chuen Lin ◽  
Phani Motamarri ◽  
Vikram Gavini

AbstractWe present a tensor-structured algorithm for efficient large-scale density functional theory (DFT) calculations by constructing a Tucker tensor basis that is adapted to the Kohn–Sham Hamiltonian and localized in real-space. The proposed approach uses an additive separable approximation to the Kohn–Sham Hamiltonian and an L1 localization technique to generate the 1-D localized functions that constitute the Tucker tensor basis. Numerical results show that the resulting Tucker tensor basis exhibits exponential convergence in the ground-state energy with increasing Tucker rank. Further, the proposed tensor-structured algorithm demonstrated sub-quadratic scaling with system-size for both systems with and without a gap, and involving many thousands of atoms. This reduced-order scaling has also resulted in the proposed approach outperforming plane-wave DFT implementation for systems beyond 2000 electrons.


Sign in / Sign up

Export Citation Format

Share Document