scholarly journals On the causes of spiral grain in corewood of Radiata pine

1969 ◽  
Vol 7 (3) ◽  
pp. 189-213 ◽  
Author(s):  
J. Maddern Harris
Keyword(s):  
2007 ◽  
Vol 37 (1) ◽  
pp. 116-127 ◽  
Author(s):  
Washington Gapare ◽  
Adrian Hathorn ◽  
Dominic Kain ◽  
Colin Matheson ◽  
Harry Wu

Spiral grain is the angular arrangement of fibres in a tangential plane with reference to the pith or vertical tree axis. Spiral grain angles exceeding 5° can cause wood to twist, which may result in a considerable amount of waste and degrade. We assessed spiral grain at breast height in two related progeny tests of radiata pine (Pinus radiata D. Don) aged 8 and 9 years established at two different sites in Australia. Radial trends for grain angle at the two sites were similar. Mean spiral grain (MSG) across the two trials was 4.3° with a standard deviation of 1.5° and a range of 0.8–10°. Estimates of individual tree heritabilities on a single-site basis for individual rings and MSG suggested that spiral grain is lowly to highly inherited (h2 = 0.11 ± 0.08 to 0.66 ± 0.21 for individual rings and 0.44 ± 0.12 for MSG). Additive genotypic correlations between individual rings grain angle and MSG were generally high, above 0.71, suggesting a favourable expected correlated response of mean grain angle in the juvenile wood to selection for grain angle of individual rings. Selection to reduce spiral grain on any of rings 2–4 (at a selection intensity of 1.755, i.e., selecting the best 10% of trees) would result in a predicted correlated genetic gain in MSG of 1.0°. Our results suggest that selection could be performed in any of the individual rings 2, 3, or 4 (equivalent to ages 4–6) and still achieve at least 75% of the genetic gain possible from selection on the mean of all rings 1–5 (MSG). This suggests that there is an optimum stage (rings 2–4) in which selection for this trait should take place. Our results suggest that a reduction in spiral grain angle in the juvenile core is one strategy to reduce the amount of lower grade timber owing to twist.


2013 ◽  
Vol 43 (1) ◽  
pp. 12 ◽  
Author(s):  
Michael S Watt ◽  
Mark O Kimberley ◽  
Jonathan J Harrington ◽  
Mark JC Riddell ◽  
Dave J Cown ◽  
...  

2012 ◽  
Vol 42 (11) ◽  
pp. 1953-1964 ◽  
Author(s):  
Irene Fernandez ◽  
Juan Gabriel Álvarez-González ◽  
Beatríz Carrasco ◽  
Ana Daría Ruíz-González ◽  
Ana Cabaneiro

Forest ecosystems can act as C sinks, thus absorbing a high percentage of atmospheric CO2. Appropriate silvicultural regimes can therefore be applied as useful tools in climate change mitigation strategies. The present study analyzed the temporal changes in the effects of thinning on soil organic matter (SOM) dynamics and on soil CO2 emissions in radiata pine ( Pinus radiata D. Don) forests. Soil C effluxes were monitored over a period of 2 years in thinned and unthinned plots. In addition, soil samples from the plots were analyzed by solid-state 13C-NMR to determine the post-thinning SOM composition and fresh soil samples were incubated under laboratory conditions to determine their biodegradability. The results indicate that the potential soil C mineralization largely depends on the proportion of alkyl-C and N-alkyl-C functional groups in the SOM and on the microbial accessibility of the recalcitrant organic pool. Soil CO2 effluxes varied widely between seasons and increased exponentially with soil heating. Thinning led to decreased soil respiration and attenuation of the seasonal fluctuations. These effects were observed for up to 20 months after thinning, although they disappeared thereafter. Thus, moderate thinning caused enduring changes to the SOM composition and appeared to have temporary effects on the C storage capacity of forest soils, which is a critical aspect under the current climatic change scenario.


Sign in / Sign up

Export Citation Format

Share Document