Improving effect of potassium in organic amendments on sodic soils

Author(s):  
Limin Tong ◽  
Fu Fan ◽  
Akira Watanabe
Water ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 57 ◽  
Author(s):  
Francisco Gonçalo Filho ◽  
Nildo da Silva Dias ◽  
Stella Ribeiro Prazeres Suddarth ◽  
Jorge F. S. Ferreira ◽  
Ray G. Anderson ◽  
...  

Saline-sodic soils are a major impediment for agricultural production in semi-arid regions. Salinity and sodicity drastically reduce agricultural crop yields, damage farm equipment, jeopardize food security, and render soils unusable for agriculture. However, many farmers in developing semi-arid regions cannot afford expensive amendments to reclaim saline-sodic soils. Furthermore, existing research does not cover soil types (e.g., Luvisols and Lixisols) that are found in many semi-arid regions of South America. Therefore, we used percolation columns to evaluate the effect of inexpensive chemical and organic amendments (gypsum and cow manure) on the reclamation of saline-sodic soils in the northeast of Brazil. Soil samples from two layers (0–20 cm and 20–40 cm in depth) were collected and placed in percolation columns. Then, we applied gypsum into the columns, with and without cow manure. The experiment followed a complete randomized design with three replications. The chemical amendment treatments included a control and four combinations of gypsum and cow manure. Percolation columns were subjected to a constant flood layer of 55 mm. We evaluated the effectiveness of sodic soil reclamation treatments via changes in soil hydraulic conductivity, chemical composition (cations and anions), electrical conductivity of the saturated soil-paste extract, pH, and the exchangeable sodium percentage. These results suggest that the combined use of gypsum and cow manure is better to reduce soil sodicity, improve soil chemical properties, and increase water infiltration than gypsum alone. Cow manure at 40 ton ha−1 was better than at 80 ton ha−1 to reduce the sodium adsorption ratio.


2007 ◽  
Vol 4 (3) ◽  
pp. 390-396 ◽  
Author(s):  
Susheel Kumar Sindhu ◽  
Amit Sharma ◽  
Saiqa Ikram

The potential value and the problems associated with the usage of spentwash in Rampur District were studied and also their environmental impacts were discussed. The studies revealed that, though at higher doses (> 250 m3/ ha) spentwash application is found detrimental to crop growth and soil fertility, its use at lower doses (125 m3/ha) remarkably improves germination, growth and yield of dryland crops. Further, it has been revealed that conjoint application of spentwash and organic amendments (farm yard manure, green leaf manure and bio-compost) is found suitable under dryland conditions. Large amounts of soluble salts have been found to be leached from calcareous and high pH sodic soils amended with spentwash. Notably, application of spentwash has resulted in leaching of high amounts of sodium from high pH sodic soils reflecting its potential in ameliorating these soils. However, exceptionally high loading of the leachate with organic and inorganic contaminants may pose potential risk for groundwater contamination.


2021 ◽  
Vol 247 ◽  
pp. 01047
Author(s):  
Mohamed Hafez ◽  
Alexander I. Popov ◽  
Mohamed Rashad

The study focused on investigating the contribution of reclamation strategies of saline-sodic soils and their impacts on soil fertility characteristics. In this study, the soil treatments were denoted as: SG1 and SG2 (23.8 and 47.7 ton/ha of spent grain); TC1 and TC2 (23.8 and 47.6 ton/ha of compost); Azospirillium in inoculation with seed and soil (Az); Az + SG1 (Az+SG1); Az + TC1 (Az+TC1); mineral fertilizers (NPK); and control (CK). All treatments were mixed in pots with 30 kg soil. The results showed that reclamation with Az and SG2 treatments significantly affected soil pH, EC, and macronutrients. In contrast, no significant (P > 0.05) effects were found with the two compost levels and NPK treatments. The salt contents were maximal in the control treatment, while decreased with Az, SG2, and Az+SG treatments. However, SG2 application decreased the soluble Na+ concentrations in soil solution. The effect of organic and biological reclamations on chemical properties was in the following order: Az+SG > SG2 > Az > TC2 > Az+M > SG1 > TC1 > NPK > CK. Moreover, it positively impacted the salt contents, which improved soil chemical properties in the saline-sodic soil after three months of seed sowing in the greenhouse.


2018 ◽  
Vol 1 (4) ◽  
Author(s):  
Zahra Noori ◽  
Mohammad-Amir Delavar ◽  
Yaser Safari

A pot experiment was done aimed to improve the chemical properties of a saline-sodic soil using individual application of alfalfa residue and two biochars, produced from sugarcane bagasse and walnut shell and their concomitant application with gypsum, aluminum sulfate and mixture of these two chemical amendments. Organic and chemical amendments were added to the soil at the weighting ratio of 2.5% and as the soil gypsum requirement, respectively. After two months of incubation, soil samples were measured for soil pH, electrical conductivity (EC) and sodium adsorption ratio (SAR) and the results were analyzed by SPSS software applying ANOVA. The results showed that organic amendments caused a reduction in soil pH and enhanced soil EC and SAR; whereas addition of gypsum and/or aluminum sulfate with biochars intensified their regulatory effects. It can be concluded that application of walnut-shell biochar with mixture of gypsum and aluminum sulfate to the saline-sodic soils has the best efficiency to reclaim the chemical soil properties. Soil leaching, as a supplementary procedure, however, is necessary to complete the improving effects of organic and/or chemical application to the soil.


1986 ◽  
Vol 4 (1) ◽  
pp. 22-25 ◽  
Author(s):  
A.J. Laiche ◽  
V.E. Nash

Three woody landscape species, Rhododendron indica ‘President Clay’, Ligustrum sinense ‘variegata’, and Ilex crenata ‘compacta’, were grown in media prepared from fresh pine bark, pine bark with wood, and pine tree chips. Although media were variable in physical properties, all exhibited very high hydraulic conductivity and low water holding capacity. The capacity of these media materials to hold fertilizer elements was very low. Nitrogen, potassium, and phosphorus were rapidly removed by leaching while calciuum and magnesium were retained longer because of the low solubility of dolomitic limestone. Pine bark was the best growth media tested for all plant species. Pine bark with wood was less satisfactory than pine bark and growth was poorest in pine tree chips. More research is needed on the use of the organic amendments with greater amounts of wood before being widely used as organic components of growth media.


Sign in / Sign up

Export Citation Format

Share Document