THERMOELASTIC PLANE WAVES WITHOUT ENERGY DISSIPATION IN A HALF-SPACE DUE TO TIME-DEPENDENT HEATING OF THE BOUNDARY

1997 ◽  
Vol 20 (6) ◽  
pp. 659-676 ◽  
Author(s):  
D. S. Chandrasekharaiah ◽  
K. S. Srinath
2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
A. M. Abd El-Latief ◽  
S. E. Khader

We consider a homogeneous isotropic thermoelastic half-space in the context of the theory of thermoelasticity without energy dissipation. There are no body forces or heat source acting on the half-space. The surface of the half-space is affected by a time dependent thermal shock and is traction free. The Laplace transform with respect to time is used. The inverse transforms are obtained in an exact manner for the temperature, thermal stress, and displacement distributions. These solutions are represented graphically and discussed for several cases of the applied heating. Comparison is made between the predictions here and those of the theory of thermoelasticity with one relaxation time.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Rajneesh Kumar ◽  
K. D. Sharma ◽  
S. K. Garg

The reflection of plane waves at the free surface of thermally conducting micropolar elastic medium with two temperatures is studied. The theory of thermoelasticity with and without energy dissipation is used to investigate the problem. The expressions for amplitudes ratios of reflected waves at different angles of incident wave are obtained. Dissipation of energy and two-temperature effects on these amplitude ratios with angle of incidence are depicted graphically. Some special and particular cases are also deduced.


Sign in / Sign up

Export Citation Format

Share Document